
Andy Shevchenko <andriy.shevchenko@intel.com>

June 23th, 2017.

2

Agenda

 Linux kernel is growing

 Managed Device Resources

 Unified Device Properties

 Special extensions of %p

 Perfect is the enemy of the good enough

 Recommendations how to prepare changes to Linux kernel

 Q&A

Linux is growing
Introduction or Linux is growing

3

4

5

Linux is growing: The most common issues

 Poor knowledge of the existing APIs

– Internal APIs

– APIs of the existing frameworks

– Many small but not least helper functions

 Experience with only single architecture or platform

– Device Tree is solely for ARM?

– ACPI is solely for x86?

– There are no more Big Endian CPUs in use?

 Power management

– Little understanding how it works

– Interrupts can be all threaded

6

Linux is growing: New Developer vs. new helper

function

Managed Device Resources
Few words about Managed Device Resources API

7

8

Managed Device Resources: Motivation

 Error path in the ->probe() callback might be twisted up

– Hard to catch a logic mistake in case of error

– Possible leak of resources

 Make developers’ life easier

– No need to reinvent a wheel

– Concentrate on the logic of the driver

– Bugs, if any, are getting fixed faster and in one place

– Add code in the middle of ->probe() callback is simple

– Easy integration into existing code

9

Memory management

 Memory allocation

– devm_kasprintf()

– devm_kcalloc(), devm_kmalloc_array()

– devm_kmalloc(), devm_kzalloc()

– devm_kmemdup(), devm_kstrdup()

 IO mapping

– devm_ioport_map()

– devm_ioremap()

– devm_ioremap_resource()

 DMA

– dmam_alloc_coherent(),

dmam_alloc_noncoherent()

– dmam_pool_create()

Other resources

 IRQ

– devm_request_irq(),

devm_request_threaded_irq()

 PCI

– pcim_enable_device()

– pcim_iomap(), pcim_iomap_regions()

– pcim_iomap_table()

 GPIO and pin control:

– devm_gpiod_get(), devm_pinctrl_get()

 Industrial IO (IIO) bus

– devm_iio_device_alloc()

– devm_iio_device_register()

– devm_iio_trigger_alloc()

Managed Device Resources: API

10

Managed Device Resources: Example (19 LOCs)

11

Managed Device Resources: Example (5 LOCs)

Unified Device Properties
Few words about Unified Device Properties API

12

13

Unified Device Properties: Motivation

 Three common resource providers

– Device Tree

– ACPI (especially r5.1 and newer)

– (Legacy) platform data or board files

 Unification

– Resource provider agnostic API

– Code deduplication

 Bye, bye, platform data

– PWM, GPIO provide lookup tables

– The built-in device properties API

14

Firmware node (Frameworks)

 Boolean

– fwnode_property_present()

– fwnode_property_read_bool()

 Integer types

– fwnode_property_read_uXX()

– fwnode_property_read_uXX_array()

 Strings

– fwnode_property_read_string()

– fwnode_property_read_string_array()

– fwnode_property_match_string()

Device node (Drivers)

 Boolean

– device_property_present()

– device_property_read_bool()

 Integer types

– device_property_read_uXX()

– device_property_read_uXX_array()

 Strings

– device_property_read_string()

– device_property_read_string_array()

– device_property_match_string()

Unified Device Properties: API

15

Unified Device Properties: Conversion example

(clean up of NFC pn544 driver: +62 –210 LOCs)

Special extensions of %p
Few words about special extensions of %p

16

Special extensions of %p: The list of (v4.11)

17

Description Pattern Description Pattern

Symbols/Function Pointers %p[FfSsB] UUID/GUID %pU[LlBb]

Kernel Pointers %pK Directory entry names %p[Dd][234]

struct resources %p[Rr] Block device names %pg

Physical addresses types %pa[dp] struct va_format %pV

Raw buffer as an escaped

string
%[*0-9]*pE[achnops] Content of struct clk %pC[nr]

Raw buffer as a hex string %[*0-9]*ph[CDN]
Bitmap and its derivatives such as

cpumask and nodemask
%[*0-9]*pb

MAC/FDDI addresses %p[Mm][FR]
Flags bitfields such as page flags,

GFP flags
%pG

IP addresses %p[Ii][46S][pfschnbl] Network device features %pNF

18

Special extensions of %p: Least used ones (v4.11)

 6 Network device features

 12 Content of struct clk

 22 Flags bitfields such as page flags, GFP flags

 28 Block device names

 67 Raw buffer as an escaped string

19

Special extensions of %p: Most used ones (v4.11)

 1789 MAC/FDDI addresses

 757 IP addresses

 614 Raw buffer as a hex string

 381 Symbols/Function Pointers

 364 Physical addresses types (phys_addr_t, dma_addr_t)

20

Special extensions of %p: Conversion example

(clean up of wireless at76c50x driver -30 LOCs)

Perfect is the enemy of the good

enough
Few words about special cases when simplification leads to regression

21

22

Perfect is the enemy of the good enough:

Case study: devm_request_threaded_irq()

 Rule of thumb

– Don’t use devm_request_irq() or devm_request_threaded_irq() if you are not clear

with the details

 Requires special attention to be paid

– Interrupt handlers can be invoked at any time until they are not explicitly unlinked

 Tasklets are in a race with interrupt handlers

– There is a race condition when tasklet might be scheduled just enough ahead of the

freeing IRQ

23

Perfect is the enemy of the good enough:

Case study: devm_kzalloc() et al.

 Scenario of a crash (character device)

– User loads a driver

– Driver registers a device node

– User opens the device node

– User unbinds the driver

– User closes the device node

– KABOOM!

 Attributes in sysfs

– Is there a problem?

 What about debugfs?

24

Recommendations how to prepare

changes to Linux kernel
Few words about changes which are going to be submitted to upstream

25

26

Recommendations how to prepare changes to

Linux kernel (basic rules):

 Follow the Coding Style and Submitting Patches guidelines

– They include some common sense rules how to make code clean in the first place

 Use existing code

– For a new driver it makes sense to look at the existing code from a known author

27

Recommendations how to prepare changes to

Linux kernel (in addition to):

 Check the code against duplications

– Many helper functions are already implemented as a part of Linux kernel internal API

 Take the material from the above slides into consideration when doing drivers

 Establish internal mailing list for review process if it’s not done yet

– If you are working in a team it is always a good idea to have an internal mailing list

dedicated to patch review

 Include a reviewer to the next round if you got some comments

– Pay a respect to reviewers who volunteered to go through your code

 If in doubt, feel free to ask

– Public mailing lists, forums, friends – do not hesitate to ask!

28

Questions and Answers

Thank you!

