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 Q&A 

 



Linux is growing 
Introduction or Linux is growing 
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Linux is growing: The most common issues 

 

 Poor knowledge of the existing APIs 

– Internal APIs 

– APIs of the existing frameworks 

– Many small but not least helper functions 

 Experience with only single architecture or platform 

– Device Tree is solely for ARM? 

– ACPI is solely for x86? 

– There are no more Big Endian CPUs in use? 

 Power management 

– Little understanding how it works 

– Interrupts can be all threaded 
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Linux is growing:  New Developer vs. new helper 

function 



Managed Device Resources 
Few words about Managed Device Resources API 
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Managed Device Resources: Motivation 

 

 Error path in the ->probe() callback might be twisted up 

– Hard to catch a logic mistake in case of error 

– Possible leak of resources 

 Make developers’ life easier 

– No need to reinvent a wheel 

– Concentrate on the logic of the driver 

– Bugs, if any, are getting fixed faster and in one place 

– Add code in the middle of ->probe() callback is simple 

– Easy integration into existing code 
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Memory management 

 Memory allocation 

– devm_kasprintf() 

– devm_kcalloc(), devm_kmalloc_array() 

– devm_kmalloc(), devm_kzalloc() 

– devm_kmemdup(), devm_kstrdup() 

 IO mapping 

– devm_ioport_map() 

– devm_ioremap() 

– devm_ioremap_resource() 

 DMA 

– dmam_alloc_coherent(), 

dmam_alloc_noncoherent() 

– dmam_pool_create() 

Other resources 

 IRQ 

– devm_request_irq(), 

devm_request_threaded_irq() 

 PCI 

– pcim_enable_device() 

– pcim_iomap(), pcim_iomap_regions() 

– pcim_iomap_table() 

 GPIO and pin control: 

– devm_gpiod_get(), devm_pinctrl_get() 

 Industrial IO (IIO) bus 

– devm_iio_device_alloc() 

– devm_iio_device_register() 

– devm_iio_trigger_alloc() 

Managed Device Resources: API 
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Managed Device Resources: Example (19 LOCs) 
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Managed Device Resources: Example (5 LOCs) 



Unified Device Properties 
Few words about Unified Device Properties API 
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Unified Device Properties: Motivation 

 

 Three common resource providers 

– Device Tree 

– ACPI (especially r5.1 and newer) 

– (Legacy) platform data or board files 

 Unification 

– Resource provider agnostic API 

– Code deduplication 

 Bye, bye, platform data 

– PWM, GPIO provide lookup tables 

– The built-in device properties API 
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Firmware node (Frameworks) 

 Boolean 

– fwnode_property_present() 

– fwnode_property_read_bool() 

 Integer types 

– fwnode_property_read_uXX() 

– fwnode_property_read_uXX_array() 

 Strings 

– fwnode_property_read_string() 

– fwnode_property_read_string_array() 

– fwnode_property_match_string() 

Device node (Drivers) 

 Boolean 

– device_property_present() 

– device_property_read_bool() 

 Integer types 

– device_property_read_uXX() 

– device_property_read_uXX_array() 

 Strings 

– device_property_read_string() 

– device_property_read_string_array() 

– device_property_match_string() 

Unified Device Properties: API 
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Unified Device Properties: Conversion example 

(clean up of NFC pn544 driver: +62 –210 LOCs) 



Special extensions of %p 
Few words about special extensions of %p 
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Special extensions of %p: The list of (v4.11) 
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Description Pattern Description Pattern 

Symbols/Function Pointers %p[FfSsB] UUID/GUID %pU[LlBb] 

Kernel Pointers %pK Directory entry names %p[Dd][234] 

struct resources %p[Rr] Block device names %pg 

Physical addresses types %pa[dp] struct va_format %pV 

Raw buffer as an escaped 

string 
%[*0-9]*pE[achnops] Content of struct clk %pC[nr] 

Raw buffer as a hex string %[*0-9]*ph[CDN] 
Bitmap and its derivatives such as 

cpumask and nodemask 
%[*0-9]*pb 

MAC/FDDI addresses %p[Mm][FR] 
Flags bitfields such as page flags, 

GFP flags 
%pG 

IP addresses %p[Ii][46S][pfschnbl] Network device features %pNF 
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Special extensions of %p: Least used ones (v4.11) 

 

 6  Network device features 

 12 Content of struct clk 

 22 Flags bitfields such as page flags, GFP flags 

 28 Block device names 

 67 Raw buffer as an escaped string 
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Special extensions of %p: Most used ones (v4.11) 

 

 1789 MAC/FDDI addresses 

 757 IP addresses 

 614 Raw buffer as a hex string 

 381 Symbols/Function Pointers 

 364 Physical addresses types (phys_addr_t, dma_addr_t) 
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Special extensions of %p: Conversion example 

(clean up of wireless at76c50x driver -30 LOCs) 



Perfect is the enemy of the good 

enough 
Few words about special cases when simplification leads to regression 
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Perfect is the enemy of the good enough: 

Case study: devm_request_threaded_irq() 

 

 Rule of thumb 

– Don’t use devm_request_irq() or devm_request_threaded_irq() if you are not clear 

with the details 

 Requires special attention to be paid 

– Interrupt handlers can be invoked at any time until they are not explicitly unlinked 

 Tasklets are in a race with interrupt handlers 

– There is a race condition when tasklet might be scheduled just enough ahead of the 

freeing IRQ 
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Perfect is the enemy of the good enough: 

Case study: devm_kzalloc() et al. 

 

 Scenario of a crash (character device) 

– User loads a driver 

– Driver registers a device node 

– User opens the device node 

– User unbinds the driver 

– User closes the device node 

– KABOOM! 

 Attributes in sysfs 

– Is there a problem? 

 What about debugfs? 
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Recommendations how to prepare 

changes to Linux kernel 
Few words about changes which are going to be submitted to upstream  
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Recommendations how to prepare changes to 

Linux kernel (basic rules): 

 

 Follow the Coding Style and Submitting Patches guidelines 

– They include some common sense rules how to make code clean in the first place 

 Use existing code 

– For a new driver it makes sense to look at the existing code from a known author 
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Recommendations how to prepare changes to 

Linux kernel (in addition to): 

 

 Check the code against duplications 

– Many helper functions are already implemented as a part of Linux kernel internal API 

 Take the material from the above slides into consideration when doing drivers 

 Establish internal mailing list for review process if it’s not done yet 

– If you are working in a team it is always a good idea to have an internal mailing list 

dedicated to patch review 

 Include a reviewer to the next round if you got some comments 

– Pay a respect to reviewers who volunteered to go through your code 

 If in doubt, feel free to ask 

– Public mailing lists, forums, friends – do not hesitate to ask! 
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Questions and Answers 

Thank you! 




