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Plan

• Why branching, rebasing and 
squashing

• HowTo: concrete Git & Hg commands
• Release branches and delivering 

fixes to several branches
• Bonus 1: Pseudoproblem: too many 

branches
• Bonus 2: Merge conflicts and Matrix 

merge



Why branching

• You can freely experiment without 
affecting others

• Others’ experiments do not affect 
you

• You make better history in VCS



Without branches: chaos



With branches: order



Why rebasing

• Rebasing during development:
– Up to date with mainline
– Smaller merge conflicts
– Testing against updated mainline
– Contrary to popular belief, possible 

without forcing after pushing



Rebase instead of merge

• Delivery to mainline by rebase 
instead of merge:
– Linear history
– Much easier to read
– Non-problematic blame and bisect
– Easier reversal
– Possibility to remove too old 

branches (performance)



Merging: expectation, order



Merging: reality, chaos



Merging: reality, chaos



Rebasing: order



Merging IRL



Rebasing IRL



Why squashing

• Compact history
• No garbage in history
• Much more readable history
• Easier reversal
• Contrary to popular belief, possible 

without forcing after pushing



Not squashing: chaos



Squashing: order



Before vs After



Step 1: make a branch



Step 1: make a branch

• Git
– git checkout –b case4

• Mercurial
– hg book case4



Step 2: develop



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash

• Git
– git checkout –b case4-2
– git rebase --interactive main

• Mercurial
– You need Rebase and Histedit extension
– hg rebase --keep --dest main
– hg histedit main
– hg book case4-2



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash

• Mercurial and rebasing
– Rebase extension can not squash without 

rebasing
– Collapse extension «collapses» with an error, 

i.e. does not work
– MQ extension removes the original commits
– Histedit extension annoys you with invocation 

of editor for every squashed commit
– Transplant and Graft extensions do not squash
– «hg diff –r rev1:rev2 | patch –p1» works



Step 4: forget about your old branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



• Submit code for review

– git push critic case4-2:r/case4

• Eventually fix things during review

– git commit -m 'Code review fixes'

– git commit -m 'More fixes'

– git push critic case4-2:r/case4

• Rebase and squash more if needed

– git checkout -b case4-3

– git rebase -i main

Step 4.1: code review



Step 4.1: code review



Step 4.1: code review



Step 5: make your work part of 
main



Step 5: make your work part of 
main

• Git
– git push . case4-2:main

• Mercurial
– (hg update case4-2)
– hg book main



Step 5: make your work part of 
main

• Alternative solutions for git
– Prerequisite: git checkout main
– Alt 1: git reset --hard case4-2
– Alt 2: git rebase case4-2
– Alt 3: git cherry-pick --ff main..case4-2
– Alt 4: git merge --ff-only case4-2



Step 5: make your work part of 
main



Before vs After



Release branches

• Make release
– git checkout main
– git checkout -b v3.00.x
– git commit …
– git tag v3.00.01



Fix on several branches

• Fix needed for branches:
– v3.00.x
– v3.01.x
– main

• Branch from the oldest release branch

– git checkout v3.00.x
– git checkout -b case-123
– git commit …



Delivery by merge



Delivery by cherry-pick



Fix on several branches

• Delivery to v3.00.x
– git checkout -b case-123-2

– git rebase -i v3.00.x

– git push . case-123-2:v3.00.x
● Delivery to v.3.01.x by merge

– git checkout v3.01.x

– git merge v3.00.x
● Delivery to main by merge

– git checkout main

– git merge v3.01.x



Fix on several branches

• Delivery to v.3.01.x by cherry-pick
– git checkout v3.01.x
– git cherry-pick a1b2c3..case-123-2

• Delivery to main by cherry-pick
– git checkout main
– git cherry-pick a1b2c3..case-123-2



Git-flow



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers ”all or nothing”

● For example, can not deliver:
– Fix 1 only to v3.00.x and main
– Fix 2 only to v3.01.x and main

• Cherry-pick
– Allows for granular delivery

● Whatever needed in whatever order
● Can also deliver all, if needed



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers ”all or nothing”

● More delivery – more merge conflicts
– Forces to resolve all merge conflicts at once

• Cherry-pick
– Allows for granular delivery

● Less merge conflicts
– Allows to resolve merge conflicts in smaller 

chunks



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers only from older branch to newer

● Otherwise delivers unwanted changes and 
makes a mess

– Original fix can only be developed against the 
oldest branch

• Cherry-pick
– Delivers from any branch to any

– Original fix can be developed on any branch

– Allows customer-specific branches

– More flexible



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Makes multi-parent commits

● Complicates history
● Hinders eventual future cherry-pick and 

rebase

• Cherry-pick
– Makes single-parent commits

● History of any release branch becomes 
linear, i.e. easier to read

● Does not hinder eventual future cherry-
pick, rebase or even merge

● Tree is simpler than graph



Pseudoproblem: too many 
branches/bookmarks



Pseudoproblem: too many sites: 
attacking the Internet since 1990s

Full list of the Internet sites is too long!



Pseudoproblem: too many sites: 
attacking the Internet since 1990s

Thank you, Captain Obvious!



Too many branches: solution



Too many branches: solution



Too many branches: solution



Too many branches: solution



Too many branches: solution



Before vs After



Merge conflicts: merge



Merge conflicts: merge



Merge conflicts: merge



Merge conflicts: rebase



Matrix merge



Matrix merge



Merge conflicts: strategies

• Merge: merging all at once
• Rebase/cherry-pick: merging step by step
• Matrix merge:

– Idea so far, not implemented in any tool

– Merging step by step

– Along (hopefully) optimal path that minimizes 
conflicts

– Can merge more automatically
● May be dangerous?

– Does not support linear history, unlike Rebase



Спасибо за внимание

Вопросы?
(Вбросы? :)
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