
Безупречная 
история

в Git или Mercurial

Алексей Хлебников
LVEE 2014



Plan

• Why branching, rebasing and 
squashing

• HowTo: concrete Git & Hg commands
• Release branches and delivering 

fixes to several branches
• Bonus 1: Pseudoproblem: too many 

branches
• Bonus 2: Merge conflicts and Matrix 

merge



Why branching

• You can freely experiment without 
affecting others

• Others’ experiments do not affect 
you

• You make better history in VCS



Without branches: chaos



With branches: order



Why rebasing

• Rebasing during development:
– Up to date with mainline
– Smaller merge conflicts
– Testing against updated mainline
– Contrary to popular belief, possible 

without forcing after pushing



Rebase instead of merge

• Delivery to mainline by rebase 
instead of merge:
– Linear history
– Much easier to read
– Non-problematic blame and bisect
– Easier reversal
– Possibility to remove too old 

branches (performance)



Merging: expectation, order



Merging: reality, chaos



Merging: reality, chaos



Rebasing: order



Merging IRL



Rebasing IRL



Why squashing

• Compact history
• No garbage in history
• Much more readable history
• Easier reversal
• Contrary to popular belief, possible 

without forcing after pushing



Not squashing: chaos



Squashing: order



Before vs After



Step 1: make a branch



Step 1: make a branch

• Git
– git checkout –b case4

• Mercurial
– hg book case4



Step 2: develop



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash

• Git
– git checkout –b case4-2
– git rebase --interactive main

• Mercurial
– You need Rebase and Histedit extension
– hg rebase --keep --dest main
– hg histedit main
– hg book case4-2



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash



Step 3: rebase and squash

• Mercurial and rebasing
– Rebase extension can not squash without 

rebasing
– Collapse extension «collapses» with an error, 

i.e. does not work
– MQ extension removes the original commits
– Histedit extension annoys you with invocation 

of editor for every squashed commit
– Transplant and Graft extensions do not squash
– «hg diff –r rev1:rev2 | patch –p1» works



Step 4: forget about your old branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



Step 4: forget about your old 
branch



• Submit code for review

– git push critic case4-2:r/case4

• Eventually fix things during review

– git commit -m 'Code review fixes'

– git commit -m 'More fixes'

– git push critic case4-2:r/case4

• Rebase and squash more if needed

– git checkout -b case4-3

– git rebase -i main

Step 4.1: code review



Step 4.1: code review



Step 4.1: code review



Step 5: make your work part of 
main



Step 5: make your work part of 
main

• Git
– git push . case4-2:main

• Mercurial
– (hg update case4-2)
– hg book main



Step 5: make your work part of 
main

• Alternative solutions for git
– Prerequisite: git checkout main
– Alt 1: git reset --hard case4-2
– Alt 2: git rebase case4-2
– Alt 3: git cherry-pick --ff main..case4-2
– Alt 4: git merge --ff-only case4-2



Step 5: make your work part of 
main



Before vs After



Release branches

• Make release
– git checkout main
– git checkout -b v3.00.x
– git commit …
– git tag v3.00.01



Fix on several branches

• Fix needed for branches:
– v3.00.x
– v3.01.x
– main

• Branch from the oldest release branch

– git checkout v3.00.x
– git checkout -b case-123
– git commit …



Delivery by merge



Delivery by cherry-pick



Fix on several branches

• Delivery to v3.00.x
– git checkout -b case-123-2

– git rebase -i v3.00.x

– git push . case-123-2:v3.00.x
● Delivery to v.3.01.x by merge

– git checkout v3.01.x

– git merge v3.00.x
● Delivery to main by merge

– git checkout main

– git merge v3.01.x



Fix on several branches

• Delivery to v.3.01.x by cherry-pick
– git checkout v3.01.x
– git cherry-pick a1b2c3..case-123-2

• Delivery to main by cherry-pick
– git checkout main
– git cherry-pick a1b2c3..case-123-2



Git-flow



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers ”all or nothing”

● For example, can not deliver:
– Fix 1 only to v3.00.x and main
– Fix 2 only to v3.01.x and main

• Cherry-pick
– Allows for granular delivery

● Whatever needed in whatever order
● Can also deliver all, if needed



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers ”all or nothing”

● More delivery – more merge conflicts
– Forces to resolve all merge conflicts at once

• Cherry-pick
– Allows for granular delivery

● Less merge conflicts
– Allows to resolve merge conflicts in smaller 

chunks



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Delivers only from older branch to newer

● Otherwise delivers unwanted changes and 
makes a mess

– Original fix can only be developed against the 
oldest branch

• Cherry-pick
– Delivers from any branch to any

– Original fix can be developed on any branch

– Allows customer-specific branches

– More flexible



Delivering fix to several branches:
merge vs cherry-pick

• Merge:
– Makes multi-parent commits

● Complicates history
● Hinders eventual future cherry-pick and 

rebase

• Cherry-pick
– Makes single-parent commits

● History of any release branch becomes 
linear, i.e. easier to read

● Does not hinder eventual future cherry-
pick, rebase or even merge

● Tree is simpler than graph



Pseudoproblem: too many 
branches/bookmarks



Pseudoproblem: too many sites: 
attacking the Internet since 1990s

Full list of the Internet sites is too long!



Pseudoproblem: too many sites: 
attacking the Internet since 1990s

Thank you, Captain Obvious!



Too many branches: solution



Too many branches: solution



Too many branches: solution



Too many branches: solution



Too many branches: solution



Before vs After



Merge conflicts: merge



Merge conflicts: merge



Merge conflicts: merge



Merge conflicts: rebase



Matrix merge



Matrix merge



Merge conflicts: strategies

• Merge: merging all at once
• Rebase/cherry-pick: merging step by step
• Matrix merge:

– Idea so far, not implemented in any tool

– Merging step by step

– Along (hopefully) optimal path that minimizes 
conflicts

– Can merge more automatically
● May be dangerous?

– Does not support linear history, unlike Rebase



Спасибо за внимание

Вопросы?
(Вбросы? :)


	Lysbilde 1
	Why branch ing
	Lysbilde 3
	Without branches: chaos
	With branches: order
	Why rebasing
	Lysbilde 7
	Merging: expectation, order
	Merging: reality, chaos
	Lysbilde 10
	Rebasing: order
	Lysbilde 12
	Lysbilde 13
	Why squashing
	Not squashing: chaos
	Squashing: order
	Before vs After
	Step 1: make a branch
	Step 1: make a branch
	Step 2: develop
	Step 3: rebase and squash
	Step 3: rebase and squash
	Step 3: rebase and squash
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Step 3: rebase and squash
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 5: make your work part of main
	Lysbilde 36
	Lysbilde 37
	Step 5: make your work part of main
	Lysbilde 39
	Step 5: make your work part of main
	Step 5: make your work part of main
	Before vs After
	Lysbilde 43
	Lysbilde 44
	Lysbilde 45
	Lysbilde 46
	Lysbilde 47
	Lysbilde 48
	Lysbilde 49
	Lysbilde 50
	Lysbilde 51
	Lysbilde 52
	Lysbilde 53
	Pseudoproblem: bookmark hell
	Bookmark hell: attacking the Internet since 1990s
	Bookmark hell: attacking the Internet since 1990s
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Lysbilde 62
	Bookmark hell: solution
	Lysbilde 64
	Lysbilde 65
	Lysbilde 66
	Lysbilde 67
	Lysbilde 68
	Lysbilde 69
	Thank you

