be3ynpeyHas
NCTopnA
B Git mnn Mercurial

Anekcen XnebHMKOB
LVEE 2014

Plan

« Why branching, rebasing and
squashing
* HowTo: concrete Git & Hg commands

* Release branches and delivering
fixes to several branches

* Bonus 1: Pseudoproblem: too many
branches

 Bonus 2: Merge conflicts and Matrix
merge

Why branching

* You can freely experiment without
affecting others

 Others’ experiments do not affect
you

* You make better history in VCS

Without branches: chaos

main

Case 3. commit 2

Case 2. commit 3

m
U

Case 1. commit 2

Case 2. commit 2

el
Ay

Case 3, commit 1

[\
y

Case 2. commit 1

i
|

Case 1. commit 1

|

With branches: order

case2

i
casel Case 2, commut 3 case3
3 3
[

b

Case 1, commit 2 Case 2, commut 2 @ommit 2
F \ A

E

Case 1, commut 1 Case 2, commut 1 Case 3, commuit 1

Why rebasing

 Rebasing during development:
- Up to date with mainline

- Smaller merge conflicts
- Testing against updated mainline

- Contrary to popular belief, possible
without forcing after pushing

Rebase instead of merge

* Delivery to mainline by rebase
instead of merge:
- Linear history

- Much easier to read
- Non-problematic blame and bisect
- Easier reversal

- Possibility to remove too old
branches (performance)

Merging: expectation, order

main

@mﬁt

Development
on 1main branch

Development
on cage branch

Branching

Comnut

Merging: reality, chaos

main

Merge point 6

point 5

point 4 Case 2, commut 2
3 [
point 3

point 2

Case 2, commnut |

Merge point 1

Merging: reality, chaos

main

Merge point 5
Case 3, commit 1 Case 2, commit 3
@point 3 Case 2, commit 1

Merge point 2 Case 1, commit 1
Merge point 1

Rebasing: order

main

Case 3. commit 2

@ 3, commit 1
3
Case 2, commit 3

Case 2. commit 2

P
=

y

il

Case 2, commit 1

Case 1, commit 2

[

y

i

Case 1. commit 1

|

Merging IRL

Iceweaselv |8 FishEye: Grah - ter...@ﬂOFishEye: Graph - po... QﬂiJ

Create review -

&, Clone | B2 Share

Files Activity Commit Graph Users Reports Search

Highlignt| Lineage K| Goto| Enter chan

ID ortag last updated a few seconds ago

develop Select branches

° 15 May 14
[] 15 May 14
[] 15 May 14
[] 15 May 14
® 15 May 14 H
® 15May 14
=] 14 May 14
[] 14 May 14
® 14 May 14
[] 14 May 14
[] 14 May 14
® 13 May 14
® 13 May 14
® 13 May 14
@ 13 May 14
°® 13 May 14
® 13 May 14
° 13 May 14
® 09 May 14
[] 09 May 14
® 09 May 14
05 May 14

® 29 Aprild i S — o I S
2 Build:20140313112921 2014-03-18) - Administration - Page generated 2014-07-09 13:44 +0200

Atlassian FishEye analysis with Crucible code review. (Version:3.3

Rebasing IRL

Iceweaselv |3 FishEye: Graph - ter BHOFishEye: Graph - po. 6" -H

Create review -

&, Clone | B2 Share

Files Activity Commit Graph Users Reports Search

Highlignt| Lineage K| Goto| Enter chan

last updated a few seconds ago

Select branches

02 Jul 14 ﬁ
02 Jul 14
02 Jul14 W=
01 Jul 14
01 Jul 14
02 Jul 14
02 Jul 14
18 Jun 14
17 Jun 14
30 Jun 14
24 Jun 14
25 Jun 14
30 Jun 14
30 Jun 14
27Jun 14 48
@ 27 Jun14 W
26 Jun 14
27dun 14 48
[] 26Jun 14 W
18 Jun 14
[] 24 Jun14 W
o 18 Jun 14
[] 19 Jun 14

Atlassian FishEye analysis with Crucible code review. (Version:3.3.2 Build:20140318112921 2014-03-19) - Administration - Page generated 2014-07-08 13:43 +0200

Why squashing

Compact history

No garbage in history

Much more readable history
Easier reversal

Contrary to popular belief, possible
without forcing after pushing

Not squashing: chaos

Bugtix 2
£
Fixing some comments

[

@cing experiment X with SO.IUD
L
< Compile fix after backout >
[
Backout of ¢
t

[
[
[
[

Commit |

Squashing: order

Complete solution as 1 commut

A

Before vs After

Before: chaos After: order

main main

Case 3, commit 2

Case 2, commut 3 @D
Case 1, commit 2 Case 1

Case 2, commit 2

Case 3, commnut 1

Case 2, commut 1

ARAAR
Y

Case 1, comnut 1

O

Step 1: make a branch

cased

Step 1: make a branch

e Git
- git checkout -b case4

 Mercurial
- hg book case4

Step 2: develop

=

Rephcuw experiment X with m:rlutmn Y

@ile fix after ba®

Backout of conunit 2
Experimenting with X

main

Step 3: rebase and squash

cazed

@g experiment X with so@
Compile fix after backout

main

Experimenting with X

Step 3: rebase and squash

cazed

@g experiment X with so@
Compile fix after backout

caged-2

main

Step 3: rebase and squash

e Git
- git checkout -b case4-2
- git rebase --interactive main

e Mercurial
- You heed Rebase and Histedit extension

- hg rebase --keep --dest main
- hg histedit main

- hg book case4-2

Step 3: rebase and squash

pick 3ed8f88 CASE-4: Commit 1

pick 00b5274 CASE-4: Commit 2

pick 208b604 CASE-4: Bugfix 1

pick 466297f CASE-4: Experimenting with X

pick 1ell95a CASE-4: Backout of commit 2

pick f18ae02 CASE-4: Compile fix after backout

pick 4171al5 CASE-4: Replacing experiment X with solution Y
pick 88771ba CASE-4: Fixing some comments

pick 392b155 CASE-4: Bugfix 2

] >

Rebase ebb5f75..392b155 onto ebb5f75

Commands :
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's Tlog message
x, exec = run command (the rest of the 1line) using shell

These 1lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

o W o W K K R H W M W H W R

Note that empty commits are commented out

< 2l

<| J< >

Step 3: rebase and squash

reword 3ed8f88 CASE-4: Commit 1

fixup 00b5274 CASE-4: Commit 2

fixup 208b604 CASE-4: Bugfix 1

fixup 466297f CASE-4: Experimenting with X

fixup 1lell95a CASE-4: Backout of commit 2

fixup fl8ae02 CASE-4: Compile fix after backout

fixup 4171al5 CASE-4: Replacing experiment X with solution Y
fixup 88771ba CASE-4: Fixing some comments

i 392b155 CASE-4: Bugfix 2

] >

[
>
o

o

Rebase ebb5f75..392b155 onto ebb5f75

Commands :

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the 1line) using shell

These 1lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

HHEHHEHEHEHEHEHEHE®ET
—h

Note that empty commits are commented out

< 2l

<| | B

Step 3: rebase and squash

ICASE-4: Commit 1

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
rebase 1n progress; onto ebb5f75

You are currently editing a commit while rebasing

branch 'CASE-4-2' on 'ebb5f75".

< |

J< »

] »

3|

Step 3: rebase and squash

CASE-4: Complete solution as 1 commit

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

rebase 1n progress; onto ebb5f75
You are currently editing a commit while rebasing
pbranch 'CASE-4-2' on 'ebb5f75'.

< |

] <

] »

3|

Step 3: rebase and squash

* Mercurial and rebasing

— Rebase extension can not squash without
rebasing

— Collapse extension «collapses» with an error,
l.e. does not work

— MQ extension removes the original commits

— Histedit extension annoys you with invocation
of editor for every squashed commit

—Transplant and Graft extensions do not squash
— «hg diff -r revl:rev2 | patch -pl» works

Step 4: forget about your old branch

cazed

@g experiment X with so@
Compile fix after backout

caged-2

main

Step 4: forget about your old
branch

main

4' ----- -
-
L= T T "’"-
7 Commit2)
e
*
.

Step 4: forget about your old
branch

i
cased-2 Backout of commit 2
""--.‘....‘:‘_

main

Step 4: forget about your old
branch

Step 4: forget about your old
branch

7~
(2
Q
» ©
[¢]
(@)Y

P
Ld
m
» =
a
hn

Step 4: forget about your old
branch

)

o~ o~ 7~ o~ 7~
(2 P €2 {1 {d
o o o o o
7] 7 o = 7] » =

'/—} o

¢ =

Z 1l 2| 2]l 22| %|l—E&

a o a O a a =g

i L2 (%) n = - =
(@]
=}
)
(q7)
1

Step 4.1: code review

 Submit code for review

- git push critic case4-2:r/case4
 Eventually fix things during review

- git commit -m 'Code review fixes'

- git commit -m 'More fixes'

- git push critic case4-2:r/case4
 Rebase and squash more if needed

- git checkout -b case4-3

- git rebase -1 main

Step 4.1: code review

Fil Rediger Vis Historikk Bokmerker Verktey Hjelp
|#r/172 (No progress) - ... | 4 |

OperaCiritic

Home | Dashboard | Branches | Search | Serwices | Repositories | Config | Tutorial | News | Sign out

Ping Review Drop Review

Write Description

r/f172: CASE-4: Complete solution as 1 commit

Evam ok

Own el

Reviewers:

Watohersr

Reoipient
Lists

Review

rfalk/CASE-4 | in http:/f172.25.129.157:1227/ payment. g1t

Alexei Khlebnikow

Alexei Khlebnikow

Castom filters:

Alexei Khlebnikow reviews §

Linuz user for accessing Critic repos

Everyone.

Progress

The branch conteming the commits o review

Edit Owners

The wzers who created sndior owas the reviewm

Hide Custam Filters Add Reviewer Manage Assignments

Users re sponsble for rewiewing the changes i this re view
Add Watcher

Addional wsers who receive e-mads shovt wpdates i this review

Users (among the reviewers and wemhers! who will receive any e-mads shout the review

Display log: [per module] [per file]

Step 4.1: code review

Fil Rediger Vis Historikk Bokmerker Verktgy Hjelp
|fr/172 (Accepted!) - C... | &

=

Display log: [per module] [per file]

Review ProgresqSuins

Accepted!

Hurry up and close it befors arpone has & change of heart.

Filter: [reviewahle] [relevant] Manual: [full] [partial

Commits (1)

When Summary Author Pending Total i
2hours ago | CASE-4: Complete solution as 1 commt Alexei Khlebnikow - 87 +3 3

Based oni tip of master

Prepare Rebase

Comments

Raise Issue Write Mote |—|
e

Step 5: make your work part of
main

Step 5: make your work part of
main

e Git
- git push . case4-2:main

e Mercurial
- (hg update case4-2)

- hg book main

Step 5: make your work part of

main

* Alternative solutions for git
— Prerequisite: git checkout main

t 1: git reset --hard case4-2

t 2: git rebase case4-2

t 3: git cherry-pick --ff main..case4-2
t 4: git merge --ff-only case4-2

Step 5: make your work part of
main

Ca

e

“ase
A
J §
A
'y
A
A

CACACALAY

Before vs After

Before: chaos After: order

main main

Case 3, commit 2

Case 2, commut 3 @D
Case 1, commit 2 Case 1

Case 2, commit 2

Case 3, commnut 1

Case 2, commut 1

ARAAR
Y

Case 1, comnut 1

O

Release branches

 Make release
— git checkout main
— git checkout -b v3.00.x
— git commit ...
—git tag v3.00.01

FiXx on several branches

 Fix needed for branches:
- v3.00.x

- v3.01.x
- main
 Branch from the oldest release branch
- git checkout v3.00.x
- git checkout -b case-123
- git commit ...

Delivery by merge

main v3.01.x

@ Merge 3.01
to main

Mergepoint

Mergepoint v3.00.x

Merge 3.01
to main

Merge 3.00
to 3.01

Commit

Mergepoint Fix 3

Merge 3.00
to main

Commit @

Delivery by cherry-pick

FiXx on several branches

* Delivery to v3.00.x
- git checkout -b case-123-2

- git rebase -i v3.00.x

- git push . case-123-2:v3.00.x
* Delivery to v.3.01.x by merge

- git checkout v3.01.x

- git merge v3.00.x
* Delivery to main by merge

- git checkout main

- git merge v3.01.x

FiXx on several branches

* Delivery to v.3.01.x by cherry-pick
- git checkout v3.01.x

- git cherry-pick alb2c3..case-123-2

* Delivery to main by cherry-pick
- git checkout main

- git cherry-pick alb2c3..case-123-2

Git-flow

feature release

develop hotfixes

branches

branches

= Major Severe bug
Feat feature for fixed for
e next release production:
for future hotfx 0.2
release

Incorporate
bugfis: in
develop

Start of
release
branch for

[From this point on,
“niext releasa”
mieans the release
affer 1.0

Bugfixes from
rel. branch
may be
continuousky
merged back
into develop

A4
Tag
0.2
v
Tag
1.0

o

Delivering fix to several branches:
merge vs cherry-pick

* Merge:
- Delivers "all or nothing”
* For example, can not deliver:
- Fix 1 only to v3.00.x and main
- Fix 2 only to v3.01.x and main

* Cherry-pick
- Allows for granular delivery

« Whatever needed in whatever order
e Can also deliver all, if needed

Delivering fix to several branches:
merge vs cherry-pick
* Merge:
- Delivers "all or nothing”

* More delivery - more merge conflicts
- Forces to resolve all merge conflicts at once
 Cherry-pick
- Allows for granular delivery
* Less merge conflicts

- Allows to resolve merge conflicts in smaller
chunks

Delivering fix to several branches:
merge vs cherry-pick
* Merge:
- Delivers only from older branch to newer

* Otherwise delivers unwanted changes and
makes a mess
- Original fix can only be developed against the
oldest branch

 Cherry-pick
- Delivers from any branch to any

- Original fix can be developed on any branch
- Allows customer-specific branches

- More flexible

Delivering fix to several branches:
merge vs cherry-pick

* Merge:
- Makes multi-parent commits
* Complicates history

* Hinders eventual future cherry-pick and
rebase

* Cherry-pick
- Makes single-parent commits

* History of any release branch becomes
linear, i.e. easier to read

* Does not hinder eventual future cherry-
pick, rebase or even merge

* Tree is simpler than graph

Pseudoproblem: too many
branches/bookmarks

main You Dev 2 Dev 3 Dev 4 Dev 5 Dev 6 Dev 7

3 3 3

X
se 6 Commit Commit Commit @]ﬂlit Commit @unit @mﬂt
F 3 A ¥ 3 A 3

I 3 f 3

3 F 3 F 3 F 3 F 3 F 3 A 3
(“asE Commit Commit

A

C

o
7]

C

o
7]

Commut Commit Commit Commit Commit

A

- —

Case 3
3
A

Case 1

C

2

o)
b

g

Pseudoproblem: too many sites:
attacking the Internet since 1990s

Full list of the Internet sites is too long!

wﬁ E;l}nusn’nu;i

Pseudoproblem: too many sites:
attacking the Internet since 1990s

YOU/DON'T NEED

THEFULL LIST

™ T VA

Thank you, Captain Obvious!

Too many branches: solution

main
A

Case 6

o
7]

C

[
w2

8

A

-

Case 3
3
A

Case 1

C

2

o)
b

g

You

Commit

A

3

Dev 2

Commit

f 3

Commit

Dev 3

Commit

I

Commut

Dev 4

Commit

I

Commit

Dev 5

Commit @@ @mﬂt
A A A

3 F 3 F 3 F 3 F 3 F 3 A 3

(“asE Commit

Commit

Dev 6

L

Commit

Dev 7

VAVE

Commit

Too many branches: solution

main You Dev 2 Dev 3 Dev 4 Dev 5 Dev 6 Dev 7
) A A A A A A

1 1 1
1 1 1 1 1
- -d -

1
1
- -—— ,—‘J-"-,._ .- - == ’——‘J“'-(,‘ '_—‘J“'-._' .- -
(:EE%E}{:) Commit) . Commit } . Commit } « Commit } « Commit } . Commit } . Commit }
' ¥ R R R R R R
1 1 1 1 1 1
1 1 1 1 1 1
- - 4 4 d - 4

Ca%{€:> (:EEE%nﬁt i Commnut ':.: Commnut ‘:1: Commuit '}-: Commnut '}:: Commiat ‘}:: Commit p
] [} R R R R R R

1
1
oedes
- -
N N N

(Ta%{E::) : Commit R { Commuit R { Commuit R { Commut R { Commit R { Commut R

- - = - -

C

&y

Case

pat]
= .
\/

Too many branches: solution

main You Dev 2 Dev 3 Dev 4 Dev 5 Dev 6 Dev 7
\) A ‘) ' ‘

se 6 Commit O Commit - 0 Commit - : Commit > : Commit > : Commit : : Commit

7 A

“E @mﬁt Commut - ¢ Commit : : Commit - : Commit : : Commit - : Commit
\ Jk - " Traa., - " T, " Traa., " e et . * tea., "

C

o
7]

o~
[
o

~
Lod
”

o >
a
R

Too many branches: solution

main You
A
Case 6 Commit

A

Cas

A

o]

o -
a
wn

Commit

Cas

&
o o
¢!
(W] !

Case 1

g

Too many branches: solution

main You

Case 4 Commit

Case 6 Commit
A ¥ 3
A F 3
<>

Case -

L
(“as@
L

Case 1

w

5\

g

Before vs After

Before: chaos After: order

main main

Case 3, commit 2

Case 2, commut 3 @D
Case 1, commit 2 Case 1

Case 2, commit 2

Case 3, commnut 1

Case 2, commut 1

ARAAR
Y

Case 1, comnut 1

O

Merge conflicts: merge

3
o

Merge conflicts: merge

main

Merge conflicts: merge

M5

M2

)

)

Merge conflicts: rebase

mai

Matrix merge

Matrix merge

!

L]

|

'] = - = '|‘

s s il v owi |

ST
-

LT .r -

L]

imgflip.eam SU00 0 &

Merge conflicts: strategies

Merge: merging all at once
Rebase/cherry-pick: merging step by step

Matrix merge:
- ldea so far, not implemented in any tool

- Merging step by step

- Along (hopefully) optimal path that minimizes
conflicts

- Can merge more automatically

* May be dangerous?
- Does not support linear history, unlike Rebase

Cnacnbo 3a BHMMaHue

BonpocChb!?

(B6bpochI? :)

	Lysbilde 1
	Why branch ing
	Lysbilde 3
	Without branches: chaos
	With branches: order
	Why rebasing
	Lysbilde 7
	Merging: expectation, order
	Merging: reality, chaos
	Lysbilde 10
	Rebasing: order
	Lysbilde 12
	Lysbilde 13
	Why squashing
	Not squashing: chaos
	Squashing: order
	Before vs After
	Step 1: make a branch
	Step 1: make a branch
	Step 2: develop
	Step 3: rebase and squash
	Step 3: rebase and squash
	Step 3: rebase and squash
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Step 3: rebase and squash
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 4: forget about your old branch
	Step 5: make your work part of main
	Lysbilde 36
	Lysbilde 37
	Step 5: make your work part of main
	Lysbilde 39
	Step 5: make your work part of main
	Step 5: make your work part of main
	Before vs After
	Lysbilde 43
	Lysbilde 44
	Lysbilde 45
	Lysbilde 46
	Lysbilde 47
	Lysbilde 48
	Lysbilde 49
	Lysbilde 50
	Lysbilde 51
	Lysbilde 52
	Lysbilde 53
	Pseudoproblem: bookmark hell
	Bookmark hell: attacking the Internet since 1990s
	Bookmark hell: attacking the Internet since 1990s
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Bookmark hell: solution
	Lysbilde 62
	Bookmark hell: solution
	Lysbilde 64
	Lysbilde 65
	Lysbilde 66
	Lysbilde 67
	Lysbilde 68
	Lysbilde 69
	Thank you

