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Plan

« Why branching, rebasing and
squashing
* HowTo: concrete Git & Hg commands

* Release branches and delivering
fixes to several branches

* Bonus 1: Pseudoproblem: too many
branches

 Bonus 2: Merge conflicts and Matrix
merge



Why branching

* You can freely experiment without
affecting others

 Others’ experiments do not affect
you

* You make better history in VCS



Without branches: chaos
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With branches: order
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Why rebasing

 Rebasing during development:
- Up to date with mainline

- Smaller merge conflicts
- Testing against updated mainline

- Contrary to popular belief, possible
without forcing after pushing



Rebase instead of merge

* Delivery to mainline by rebase
instead of merge:
- Linear history

- Much easier to read
- Non-problematic blame and bisect
- Easier reversal

- Possibility to remove too old
branches (performance)



Merging: expectation, order
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Merging: reality, chaos
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Merging: reality, chaos
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Rebasing: order
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Merging IRL
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Rebasing IRL
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Why squashing

Compact history

No garbage in history

Much more readable history
Easier reversal

Contrary to popular belief, possible
without forcing after pushing



Not squashing: chaos
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Squashing: order
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Before vs After

Before: chaos After: order
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Step 1: make a branch

cased




Step 1: make a branch

e Git
- git checkout -b case4

 Mercurial
- hg book case4



Step 2: develop
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Step 3: rebase and squash
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Step 3: rebase and squash
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Step 3: rebase and squash

e Git
- git checkout -b case4-2
- git rebase --interactive main

e Mercurial
- You heed Rebase and Histedit extension

- hg rebase --keep --dest main
- hg histedit main

- hg book case4-2



Step 3: rebase and squash

pick 3ed8f88 CASE-4: Commit 1

pick 00b5274 CASE-4: Commit 2

pick 208b604 CASE-4: Bugfix 1

pick 466297f CASE-4: Experimenting with X

pick 1ell95a CASE-4: Backout of commit 2

pick f18ae02 CASE-4: Compile fix after backout

pick 4171al5 CASE-4: Replacing experiment X with solution Y
pick 88771ba CASE-4: Fixing some comments

pick 392b155 CASE-4: Bugfix 2

] >

Rebase ebb5f75..392b155 onto ebb5f75

Commands :
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's Tlog message
x, exec = run command (the rest of the 1line) using shell

These 1lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

o W o W K K R H W M W H W R

Note that empty commits are commented out
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Step 3: rebase and squash

reword 3ed8f88 CASE-4: Commit 1

fixup 00b5274 CASE-4: Commit 2

fixup 208b604 CASE-4: Bugfix 1

fixup 466297f CASE-4: Experimenting with X

fixup 1lell95a CASE-4: Backout of commit 2

fixup fl8ae02 CASE-4: Compile fix after backout

fixup 4171al5 CASE-4: Replacing experiment X with solution Y
fixup 88771ba CASE-4: Fixing some comments

i 392b155 CASE-4: Bugfix 2

] >

[
>
o

o

Rebase ebb5f75..392b155 onto ebb5f75

Commands :

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the 1line) using shell

These 1lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

HHEHHEHEHEHEHEHEHE®ET
—h

Note that empty commits are commented out
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Step 3: rebase and squash

ICASE-4: Commit 1

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# rebase 1n progress; onto ebb5f75

# You are currently editing a commit while rebasing

# branch 'CASE-4-2' on 'ebb5f75".

< |
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Step 3: rebase and squash

CASE-4: Complete solution as 1 commit

# Please enter the commit message for your changes. Lines starting

# with '#' will be ignored, and an empty message aborts the commit.

# rebase 1n progress; onto ebb5f75
# You are currently editing a commit while rebasing
# pbranch 'CASE-4-2' on 'ebb5f75'.
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Step 3: rebase and squash

* Mercurial and rebasing

— Rebase extension can not squash without
rebasing

— Collapse extension «collapses» with an error,
l.e. does not work

— MQ extension removes the original commits

— Histedit extension annoys you with invocation
of editor for every squashed commit

—Transplant and Graft extensions do not squash
— «hg diff -r revl:rev2 | patch -pl» works



Step 4: forget about your old branch
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Step 4: forget about your old
branch
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Step 4: forget about your old
branch
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cased-2 Backout of commit 2
""--.‘....‘:‘_ ...........

main



Step 4: forget about your old
branch




Step 4: forget about your old
branch
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Step 4: forget about your old
branch
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Step 4.1: code review

 Submit code for review

- git push critic case4-2:r/case4
 Eventually fix things during review

- git commit -m 'Code review fixes'

- git commit -m 'More fixes'

- git push critic case4-2:r/case4
 Rebase and squash more if needed

- git checkout -b case4-3

- git rebase -1 main



Step 4.1: code review

Fil Rediger Vis Historikk Bokmerker Verktey Hjelp
|#r/172 (No progress) - ... | 4 |

OperaCiritic

Home | Dashboard | Branches | Search | Serwices | Repositories | Config | Tutorial | News | Sign out

Ping Review Drop Review

Write Description

r/f172: CASE-4: Complete solution as 1 commit

Evam ok

Own el

Reviewers:

Watohersr

Reoipient
Lists

Review

rfalk/CASE-4 | in  http:/f172.25.129.157:1227/ payment. g1t

Alexei Khlebnikow

Alexei Khlebnikow

Castom filters:

Alexei Khlebnikow reviews §

Linuz user for accessing Critic repos

Everyone.

Progress

The branch conteming the commits o review

Edit Owners

The wzers who created sndior owas the reviewm

Hide Custam Filters Add Reviewer Manage Assignments

Users re sponsble for rewiewing the changes i this re view
Add Watcher

Addional wsers who receive e-mads shovt wpdates i this review

Users (among the reviewers and wemhers! who will receive any e-mads shout the review

Display log: [per module] [per file]




Step 4.1: code review

Fil Rediger Vis Historikk Bokmerker Verktgy Hjelp
|fr/172 (Accepted!) - C... | &

=

Display log: [per module] [per file]

Review ProgresqSuins

Accepted!

Hurry up and close it befors arpone has & change of heart.

Filter: [reviewahle] [relevant] Manual: [full] [partial

Commits (1)

When Summary Author Pending Total i
2hours ago | CASE-4: Complete solution as 1 commt Alexei Khlebnikow - 87 +3 3

Based oni tip of master

Prepare Rebase

Comments

Raise Issue Write Mote |—|
e



Step 5: make your work part of
main




Step 5: make your work part of
main

e Git
- git push . case4-2:main

e Mercurial
- (hg update case4-2)

- hg book main



Step 5: make your work part of

main

* Alternative solutions for git
— Prerequisite: git checkout main

t 1: git reset --hard case4-2

t 2: git rebase case4-2

t 3: git cherry-pick --ff main..case4-2
t 4: git merge --ff-only case4-2



Step 5: make your work part of
main
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Before vs After

Before: chaos After: order

main main
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Release branches

 Make release
— git checkout main
— git checkout -b v3.00.x
— git commit ...
—git tag v3.00.01



FiXx on several branches

 Fix needed for branches:
- v3.00.x

- v3.01.x
- main
 Branch from the oldest release branch
- git checkout v3.00.x
- git checkout -b case-123
- git commit ...



Delivery by merge

main v3.01.x

@ Merge 3.01
to main

Mergepoint

Mergepoint v3.00.x

Merge 3.01
to main

Merge 3.00
to 3.01

Commit

Mergepoint Fix 3

Merge 3.00
to main

Commit @




Delivery by cherry-pick




FiXx on several branches

* Delivery to v3.00.x
- git checkout -b case-123-2

- git rebase -i v3.00.x

- git push . case-123-2:v3.00.x
* Delivery to v.3.01.x by merge

- git checkout v3.01.x

- git merge v3.00.x
* Delivery to main by merge

- git checkout main

- git merge v3.01.x



FiXx on several branches

* Delivery to v.3.01.x by cherry-pick
- git checkout v3.01.x

- git cherry-pick alb2c3..case-123-2

* Delivery to main by cherry-pick
- git checkout main

- git cherry-pick alb2c3..case-123-2



Git-flow

feature release

develop hotfixes

branches

branches

= Major Severe bug
Feat feature for fixed for
e next release production:
for future hotfx 0.2
release

Incorporate
bugfis: in
develop

Start of
release
branch for

[From this point on,
“niext releasa”
mieans the release
affer 1.0

Bugfixes from
rel. branch
may be
continuousky
merged back
into develop

A4
Tag
0.2
v
Tag
1.0
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Delivering fix to several branches:
merge vs cherry-pick

* Merge:
- Delivers "all or nothing”
* For example, can not deliver:
- Fix 1 only to v3.00.x and main
- Fix 2 only to v3.01.x and main

* Cherry-pick
- Allows for granular delivery

« Whatever needed in whatever order
e Can also deliver all, if needed



Delivering fix to several branches:
merge vs cherry-pick
* Merge:
- Delivers "all or nothing”

* More delivery - more merge conflicts
- Forces to resolve all merge conflicts at once
 Cherry-pick
- Allows for granular delivery
* Less merge conflicts

- Allows to resolve merge conflicts in smaller
chunks



Delivering fix to several branches:
merge vs cherry-pick
* Merge:
- Delivers only from older branch to newer

* Otherwise delivers unwanted changes and
makes a mess
- Original fix can only be developed against the
oldest branch

 Cherry-pick
- Delivers from any branch to any

- Original fix can be developed on any branch
- Allows customer-specific branches

- More flexible



Delivering fix to several branches:
merge vs cherry-pick

* Merge:
- Makes multi-parent commits
* Complicates history

* Hinders eventual future cherry-pick and
rebase

* Cherry-pick
- Makes single-parent commits

* History of any release branch becomes
linear, i.e. easier to read

* Does not hinder eventual future cherry-
pick, rebase or even merge

* Tree is simpler than graph



Pseudoproblem: too many
branches/bookmarks
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Pseudoproblem: too many sites:
attacking the Internet since 1990s

Full list of the Internet sites is too long!
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Pseudoproblem: too many sites:
attacking the Internet since 1990s

YOU/DON'T NEED

THEFULL LIST

™ T VA

Thank you, Captain Obvious!



Too many branches: solution
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Too many branches: solution
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Too many branches: solution
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Too many branches: solution
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Too many branches: solution
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Before vs After

Before: chaos After: order

main main

Case 3, commit 2

Case 2, commut 3 @D
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Merge conflicts: merge
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Merge conflicts: merge

main




Merge conflicts: merge
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Merge conflicts: rebase
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Matrix merge




Matrix merge
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Merge conflicts: strategies

Merge: merging all at once
Rebase/cherry-pick: merging step by step

Matrix merge:
- ldea so far, not implemented in any tool

- Merging step by step

- Along (hopefully) optimal path that minimizes
conflicts

- Can merge more automatically

* May be dangerous?
- Does not support linear history, unlike Rebase
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