
Methods of benchmarking NoSQL database systems

Ilya Bakulin
webmaster@kibab.com, kibab@FreeBSD.org

SMS Traffic

LVEE 2011

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 1 / 16

1 Introduction

2 YCSB benchmarking framework

3 YCSB practical usage

4 Results

5 Where to find further information

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 2 / 16

Why benchmarking NoSQL is nessesary

No guides / FAQs about performance are generally available, or are
outdated

NoSQL systems are actively developed

Nobody wants to end up with crashed DB in production right before
2-week vacation

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 3 / 16

Why benchmarking NoSQL is complex

RDBMS use SQL to provide access to data stored in them, while
NOSQL systems don’t

Each NoSQL uses different protocol (Thrift, Memcached-style, own
protocols)

Existing benchmarks require SQL to work with database under
inspection.

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 4 / 16

What is YCSB?

YCSB stands for Yahoo Cloud Serving Benchmark

Developed by Yahoo! Research group

Open Source project, hosted on GitHub (178 watchers, 42 forks)

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 5 / 16

Architecture

Java application

Shipped with ready-to-use adapters for several popular Opensource
databases

5

Benchmark tool

•! Java application

–! Many systems have Java APIs

–! Other systems via HTTP/REST, JNI or some other solution

Workload
parameter file

•! R/W mix
•! Record size

•! Data set
•! …

Command-line parameters
•! DB to use

•! Target throughput
•! Number of threads

•! …

YCSB client

D
B

 c
lie

n
t

Client
threads

Stats

Workload
executor C

lo
u
d
 D

B

Extensible: plug in new clients
Extensible: define new workloads

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 6 / 16

More on DB interface

Simple operations: INSERT, UPDATE, REPLACE, DELETE, SCAN

Does not use SQL

... but SQL support is avaible through contributed JDBC driver

... Even sharding configurations are possible

5

Benchmark tool

•! Java application

–! Many systems have Java APIs

–! Other systems via HTTP/REST, JNI or some other solution

Workload
parameter file

•! R/W mix
•! Record size

•! Data set
•! …

Command-line parameters
•! DB to use

•! Target throughput
•! Number of threads

•! …

YCSB client

D
B

 c
lie

n
t

Client
threads

Stats

Workload
executor C

lo
u
d
 D

B

Extensible: plug in new clients
Extensible: define new workloads

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 7 / 16

More on DB interface

Simple operations: INSERT, UPDATE, REPLACE, DELETE, SCAN

Does not use SQL

... but SQL support is avaible through contributed JDBC driver

... Even sharding configurations are possible

5

Benchmark tool

•! Java application

–! Many systems have Java APIs

–! Other systems via HTTP/REST, JNI or some other solution

Workload
parameter file

•! R/W mix
•! Record size

•! Data set
•! …

Command-line parameters
•! DB to use

•! Target throughput
•! Number of threads

•! …

YCSB client

D
B

 c
lie

n
t

Client
threads

Stats

Workload
executor C

lo
u
d
 D

B

Extensible: plug in new clients
Extensible: define new workloads

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 7 / 16

More on DB interface

Simple operations: INSERT, UPDATE, REPLACE, DELETE, SCAN

Does not use SQL

... but SQL support is avaible through contributed JDBC driver

... Even sharding configurations are possible

5

Benchmark tool

•! Java application

–! Many systems have Java APIs

–! Other systems via HTTP/REST, JNI or some other solution

Workload
parameter file

•! R/W mix
•! Record size

•! Data set
•! …

Command-line parameters
•! DB to use

•! Target throughput
•! Number of threads

•! …

YCSB client

D
B

 c
lie

n
t

Client
threads

Stats

Workload
executor C

lo
u
d
 D

B

Extensible: plug in new clients
Extensible: define new workloads

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 7 / 16

More on workload

Specifies what DB
operations are used by
application

Also defines request
distribution

It is possible to specify
record size

It’s possible to specify
number of records and
operations

• Update: Update a record by replacing the value of one
field.

• Read: Read a record, either one randomly chosen field
or all fields.

• Scan: Scan records in order, starting at a randomly
chosen record key. The number of records to scan is
randomly chosen.

For scan specifically, the distribution of scan lengths is
chosen as part of the workload. Thus, the scan() method
takes an initial key and the number of records to scan. Of
course, a real application may instead specify a scan interval
(i.e., from February 1st to February 15th). The number of
records parameter allows us to control the size of these in-
tervals, without having to determine and specify meaningful
endpoints for the scan. (All of the database calls, including
scan(), are described in Section 5.2.1.)

4.1 Distributions
The workload client must make many random choices

when generating load: which operation to perform (Insert,
Update, Read or Scan), which record to read or write, how
many records to scan, and so on. These decisions are gov-
erned by random distributions. YCSB has several built-in
distributions:

• Uniform: Choose an item uniformly at random. For ex-
ample, when choosing a record, all records in the database
are equally likely to be chosen.

• Zipfian: Choose an item according to the Zipfian dis-
tribution. For example, when choosing a record, some
records will be extremely popular (the head of the distri-
bution) while most records will be unpopular (the tail).

• Latest: Like the Zipfian distribution, except that the
most recently inserted records are in the head of the dis-
tribution.

• Multinomial: Probabilities for each item can be speci-
fied. For example, we might assign a probability of 0.95
to the Read operation, a probability of 0.05 to the Up-
date operation, and a probability of 0 to Scan and Insert.
The result would be a read-heavy workload.

Figure 1 illustrates the difference between the uniform,
zipfian and latest distributions. The horizontal axes in the
figure represent the items that may be chosen (e.g., records)
in order of insertion, while the vertical bars represent the
probability that the item is chosen. Note that the last in-
serted item may not be inserted at the end of the key space.
For example, Twitter status updates might be clustered by
user, rather than by timestamp, meaning that two recently
inserted items may be far apart in the key space.

A key difference between the Latest and Zipfian distribu-
tions is their behavior when new items are inserted. Under
the Latest distribution, the newly inserted item becomes the
most popular, while the previously popular items become
less so. Under the Zipfian distribution, items retain their
popularity even as new items are inserted, whether or not
the newly inserted item is popular. The Latest distribution
is meant to model applications where recency matters; for
example, only recent blog posts or news stories are popular,
and the popularity decays quickly. In contrast, the Zipfian
distribution models items whose popularity is independent
of their newness; a particular user might be extremely pop-

Uniform:

!"#$%&'(")(%*$%

+
(
,
-
./
%'
&0

1)))2)))333 4

Zipfian:

!"#$%&'(")(%*$%

+
(
,
-
./
%'
&0

1)))2)))333 4

Latest:

!"#$%&'(")(%*$%

+
(
,
-
./
%'
&0

1)))2)))333 4

Figure 1: Probability distributions. Horizontal axes
represents items in order of insertion, and vertical
axes represent probability of being chosen.

ular, with many views of her profile page, even though she
has joined many years ago.

4.2 The Workloads
We defined the workloads in the core package by assign-

ing different distributions to the two main choices we must
make: which operation to perform, and which record to read
or write. The various combinations are shown in Table 2.
Although we do not attempt to model complex applications
precisely (as discussed above), we list a sample application
that generally has the characteristics of the workload.

Loading the database is likely to take longer than any
individual experiment. In our tests, loads took between 10-
20 hours (depending on the database system), while we ran
each experiment (e.g., a particular workload at a particular
target throughput against a particular database) for 30 min-
utes. All the core package workloads use the same dataset,
so it is possible to load the database once and then run all
the workloads. However, workloads A and B modify records,
and D and E insert records. If database writes are likely to
impact the operation of other workloads (e.g., by fragment-
ing the on-disk representation) it may be necessary to re-load
the database. We do not prescribe a particular database
loading strategy in our benchmark, since different database
systems have different loading mechanisms (including some
that have no special bulk load facility at all).

5. DETAILS OF THE BENCHMARK TOOL
We have developed a tool, called the YCSB Client, to

execute the YCSB benchmarks. A key design goal of our
tool is extensibility, so that it can be used to benchmark
new cloud database systems, and so that new workloads
can be developed. We have used this tool to measure the
performance of several cloud systems, as we report in the
next section. This tool is also available under an open source
license, so that others may use and extend the tool, and
contribute new workloads and database interfaces.

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 8 / 16

/* TODO: Remove this crap */

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 9 / 16

SMS Traffic: workload construction

SMS service provider, several gateways, big clients (such as banks)

15% inserts, 65% updates, 15% reads

Request distribution: latest SMS messages are the ”hottest” ones

Evaluated Cassandra and sharded MySQL as DB storage for the next
generation of SMS sending platform

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 10 / 16

Testing process

3 instances of DBMS system on one server (Core Quad Q9400, 4GB
RAM, SATA-II HDD, FreeBSD 8.2-amd64)

Cassandra 0.7.4 (1GB Java heap / instance)

MySQL 5.1 + InnoDB engine (1GB InnoDB buffer pool size /
instance)

Client: separate machine, 1Gb/s connection

Should avoid swapping and disk IO saturation

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 11 / 16

Some resuts: Workload ”A”: 50% read / 50% write

9

Workload A – Update heavy
•! 50/50 Read/update

Comment: Cassandra is optimized for writes, and achieves higher throughput and lower
latency. Sherpa and MySQL achieve roughly comparable performance, as both are
limited by MySQL’s capabilities. HBase has good write latency, because of commits to
memory, and somewhat higher read latency, because of the need to reconstruct records.

0

10

20

30

40

50

60

70

0 5000 10000 15000

A
v
e
ra

g
e
 r

e
a
d
 l
a
te

n
c
y
 (

m
s
)

Throughput (ops/sec)

Workload A - Read latency

Cassandra Hbase Sherpa MySQL

0

10

20

30

40

50

60

70

80

0 5000 10000 15000

U
p
d
a
te

 l
a
te

n
c
y
 (

m
s
)

Throughput (ops/sec)

Workload A - Update latency

Cassandra Hbase Sherpa MySQL

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 12 / 16

Some resuts: Workload ”A”: 50% read / 50% write

9

Workload A – Update heavy
•! 50/50 Read/update

Comment: Cassandra is optimized for writes, and achieves higher throughput and lower
latency. Sherpa and MySQL achieve roughly comparable performance, as both are
limited by MySQL’s capabilities. HBase has good write latency, because of commits to
memory, and somewhat higher read latency, because of the need to reconstruct records.

0

10

20

30

40

50

60

70

0 5000 10000 15000

A
v
e
ra

g
e
 r

e
a
d
 l
a
te

n
c
y
 (

m
s
)

Throughput (ops/sec)

Workload A - Read latency

Cassandra Hbase Sherpa MySQL

0

10

20

30

40

50

60

70

80

0 5000 10000 15000

U
p
d
a
te

 l
a
te

n
c
y
 (

m
s
)

Throughput (ops/sec)

Workload A - Update latency

Cassandra Hbase Sherpa MySQL

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 13 / 16

Some resuts: Workload ”B”: 95% read / 5% write

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 r

e
a
d
 l
a
te

n
c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 u

p
d
a
te

 l
a
te

n
c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 14 / 16

Some resuts: Workload ”B”: 95% read / 5% write

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 r

e
a
d
 l
a
te

n
c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 u

p
d
a
te

 l
a
te

n
c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 15 / 16

Links

Yahoo Cloud Serving Benchmark:
https://github.com/brianfrankcooper/YCSB

google://

webmaster@kibab.com, kibab@FreeBSD.org

Ilya Bakulin (SMS Traffic) NoSQL benchmarking July 2, 2011 16 / 16

	Introduction
	YCSB benchmarking framework
	YCSB practical usage
	Results
	Where to find further information

