On Digital Monies

July 2, 2011
Digital Payment vs. Digital Money

- Payment System < Money
Digital Payment vs. Digital Money

- Payment System < Money
- Functions of money (textbook)
 1. Payment
 2. Measure of value
 3. Saving / investment (store of value)
Digital Payment vs. Digital Money

- Payment System < Money
- Functions of money (textbook)
 1. Payment
 2. Measure of value
 3. Saving / investment (store of value)
- Why bother with the “digital” part?
Digital Payment vs. Digital Money

- Payment System < Money
- Functions of money (textbook)
 1. Payment
 2. Measure of value
 3. Saving / investment (store of value)
- Why bother with the “digital” part?
- Merry Crisis!
Digital Monies: Past, Present and Future

1. DigiCash
 - David Chaum, 1990
 - Emphasis on untraceability

2. WebMoney
 - WM Transfer Ltd., 1997
 - Emphasis on finality of transactions

3. BitCoin
 - Emphasis on guaranteed scarcity

4. ePoint
 - Emphasis on issuer transparency
Technical Challenge #1: Double Spending

- **DigiCash**
 Reactive security measures

- **WebMoney**
 Proactive: centralized account-keeping

- **BitCoin**
 Long-term proactive: approx. 1h confirmation time

- **ePoint** (future)
 All of the above. :-(
Economic Challenge #1: Acceptance

- **DigiCash**
 Backing by banking system.

- **WebMoney**
 Backing by escrow services and contractual acceptance.

- **BitCoin**
 Purely speculative.

- **ePoint (future)**
 Backing by securitized debt.
Legal Challenge #1: State Monopoly

- **DigiCash**
 Banking license

- **WebMoney**
 Ownership & purchase certificate

- **BitCoin**
 Outside of state jurisdiction

- **ePoint** *(future)*
 Purchase certificate
Architectural considerations

- Open source infrastructure; the only secrets are keys
- Most of the work is done by paranoid clients
 Paranoid users only need to trust their client sw/hw
- Weakly coupled server nodes provide a sufficiently consistent database of transactions and balances
- Server nodes are not trusted, but rewarded
- There is one transaction type: transfer of a given amount of funds from one account to another.
- Issuing is simply incurring a negative balance.
Implementation details

- Transactions are split into two: give transactions signed by the payer and take transactions signed by the recipient.
- Partial balances are calculated by clients and checked by both clients and server nodes.
- Transactions refer to earlier transactions by hash values, checked by all parties.
- References are included to
 - related transactions
 - very recent transactions
 - random transactions in the past
- Voluntary transaction fees refer to the corresponding transactions
User experience

- Naïve transactions are possible
- Peer-to-peer payment over any channel
 - by cellphone
 - by email
 - over the web
 - in online chat
 - by handing over pieces of paper
 - ... even verbally (over the phone or in person)
User experience

- Naïve transactions are possible
- Peer-to-peer payment over any channel
 - by cellphone
 - by email
 - over the web
 - in online chat
 - by handing over pieces of paper
 - ... even verbally (over the phone or in person)
- Cash-like behavior
 - locally stored tokens vs. centrally kept accounts
 - no identification (hence no risk of identity theft)
 - some measure of privacy
Payment tokens: rands

- Each payment token is a short *random* code called “**rand**”.
- Rands have many faces:
 - **textual** representation
 - vT0e2RutvrF8
 - **QR code**
 - **paper** rands
 - **electronic** representation
Thank you for your attention!

www.epointsystem.org