

#>LLPD

Ivan Matylitski
https://github.com/buffovich

http://www.epam.com/

http://www.epam.com/solutions/embedded.html

https://github.com/buffovich
http://www.epam.com/
http://www.epam.com/solutions/embedded.html

#>LLPDhttp://www.epam.com/

Flexible user-level implementation of Flexible user-level implementation of
SLAB-like free listSLAB-like free list

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Flexible user-level implementation of SLAB-like free listFlexible user-level implementation of SLAB-like free list
Basic ideas about SLAB

➢ History

➢ Goal

➢ Structure

My own cute SLAB
➢ Limitations of existing implementations

➢ Features

➢ Architecture

➢ Involved technologies and science

➢ My own inventions

➢

http://www.epam.com/

#>LLPDhttp://www.epam.com/

History of SLABHistory of SLAB

SLAB structure was invented by
Jeff Bonwick and introduced in
the Solaris 2.4 kernel.

http://www.epam.com/

#>LLPDhttp://www.epam.com/

History of SLABHistory of SLAB

He needed faster algorithm for massive
allocation-deallocation of structures of the
same type:

● thread descriptors

● file descriptions

● etc

… instead of regular “best-fit” or “first-fit”
allocator.

Jeff noticed that we can predict quantity
and size of objects which will be needed in
future in particular cases (thread structures
are needed always)

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Goal of SLABGoal of SLAB

The vast majority of programs allocate,
initialize, finalize and deallocate a lot of
objects of the same type during they
execution.

The idea of SLAB (as well as free list) is why
don't recycle existing objects to avoid
allocation and initialization overheads?

http://www.epam.com/

#>LLPDhttp://www.epam.com/

SLAB structure and mechanicsSLAB structure and mechanics

All allocations and object initialization are
performed in “chunks” or “slabs” with
reasonable amount of objects inside.

Probably, that's where “SLAB” came from.

Header O O O O O

Chunk consists of header (objects
number, next-link, free map, etc) and
array of instances. Header may have
optional padding at the very end of
header structure.

http://www.epam.com/

#>LLPDhttp://www.epam.com/

SLAB structure and mechanicsSLAB structure and mechanics
SLAB has three different lists:

H

O

O

O

O

O

H

O

O

O

O

O

...

1) Empty list where
chunks don't have any
occupied instance.

H

O

O

O

O

O

H

O

O

O

O

O

... H H

O

...

O

O

O

O

O

O

O

O

O

1) Partial list where
chunks have both
occupied and free
instances.

1) Full list where
chunks don't have any
instances for
allocation.

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Linux kernel as one of the popular SLAB users:Linux kernel as one of the popular SLAB users:
Kernel API:

struct kmem_cache *
kmem_cache_create(const char *name, size_t
size, size_t align, unsigned long flags,
void (*ctor)(void *));

void * kmem_cache_alloc(struct kmem_cache
*cachep, gfp_t flags);

kmem_cache_free(task_struct_cachep, tsk);

kmem_cache_destroy(task_struct_cachep);

SLAB structure and mechanicsSLAB structure and mechanics

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Limitations of existing implementations:Limitations of existing implementations:

1) kernel SLAB – code isn't usable in userspace
because of kernel low level style and system tricks;

2) pool implementation in Apache Runtime Library –
tied to libapr, absence of flexibility and “configurability”;

3) pool implementation in Boost – tied to C++ and
Boost; isn't directly applicable in some important cases
because of the lack of “configurability”;

5) several implementations I met at GitHub during
investigation – very simple and not thread-aware.

My own SLAB implementationMy own SLAB implementation

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Killing feature is...Killing feature is...

… that user can choose almost everything:

● particular back-end for memory allocation at compilation stage (ptmalloc,
je_malloc, tcmalloc is currently available);

● particular scheme of behavior in multi-threaded environment at run-time:

– local lists for each thread (disjoint access);

– global, per-SLAB lists;

● scheme of protecting of lists from corruption under multi-threaded
contention at run-time:

– simple thread-unaware scheme;

– coarse-grained locks for three lists;

– fine-grained locks;

– lock-less scheme.

● optional cache-coloring

My own SLAB implementationMy own SLAB implementation

http://www.epam.com/

#>LLPDhttp://www.epam.com/

● Project is not attended to particular
library/framework/environment; you can use it
absolutely separately;

● Optional reference counting for block

● Constructors/destructors/”recyclers” support

My own SLAB implementationMy own SLAB implementation

Another points are...Another points are...

http://www.epam.com/

#>LLPDhttp://www.epam.com/

● Applicable for the wide range of cases:

– Low-memory devices;

– Real-time applications;

– Low-powered devices;

– HA applications

● Provides tools with justified trade-offs – you may
assemble what suits you in particular case.

My own SLAB implementationMy own SLAB implementation

Outcome from just described features is...Outcome from just described features is...

http://www.epam.com/

#>LLPDhttp://www.epam.com/

My own SLAB implementationMy own SLAB implementation
ArchitectureArchitecture

SLAB API
● pool_*_create
● pool_object_alloc
● pool_object_get
● pool_object_put
● pool_free
● pool_reap

Simple Coarse-grained lock Fine-grained lock Lockless

Per-SLAB lists Thread-local lists

ptmalloc je_malloc tcmalloc

http://www.epam.com/

#>LLPDhttp://www.epam.com/

My own SLAB implementationMy own SLAB implementation
Technologies mapTechnologies map

Coarse-grained lock

Fine-grained lock

Lockless

Thread-local lists

POSIX Pthreads

Safe memory reclamation Hazard pointers

Reference counting

RCU

Lock-less doubly linked lists

Dynamically
extensible setHierarchical bitmap

http://www.epam.com/

#>LLPDhttp://www.epam.com/

My own SLAB implementationMy own SLAB implementation

My own invention – hierarchical bitmapMy own invention – hierarchical bitmap

Scheme: Search algorithm:

Bob up
Sink

http://www.epam.com/

#>LLPDhttp://www.epam.com/

Thanks to ...Thanks to ...

Denis Pynkin (EPAM Systems)

Artem Sheremet (EPAM Systems)

Alexey Cheusov (Invention Machine)

http://www.epam.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

