
LINC – Open Source, Enterprise,
Full-Functional OpenFlow Switch,

written on Erlang

Dmitry Orekhov, Epam Systems

2011 © EPAM Systems

OpenFlow switch and Controller

2

OF Switch
OF Switch

OF Controller

OF Switch

Secure
channel

Flow
Table 0

Flow
Table N

OF Protocol

PORTS

OpenFlow
Resource

OpenFlow
Resource

Group
Table

2011 © EPAM Systems

Packet forwarding inside OpenFlow switch

3

OpenFlow Switch

Flow Table 0 Flow Table 1 Flow Table N

Match,
Instruction;
......

Match,
Instruction;
......

Match,
Instruction;
......

In-Packet Out-Packet

• Packet may transferred to other table
• Packet header may be modified
• Packet may be forwarded to given port or just dropped
• Packet may be applied to given QoS

Out-PacketOut-Packet

2011 © EPAM Systems

Flow table entry: key elements

4

Match criteria:
Ingress-port
Ethernet MAC
ARP
IPv4 and IPv6
TCP ports
VLAN, MPLS etc.

Instruction:
Go-To Table
Modify Metadata
Action Set {forward, apply QoS, drop, Apply to
Group}

Match Fields Priority Counters Instruction setTimeout Cookies

2011 © EPAM Systems

OpenFlow examples

5

OpenFlow can be compared to the instruction set of a CPU. It specifies basic primitives
that can be used by an external software application to program the forwarding plane of
network devices, just like the instruction set of a CPU would program a computer system.

2011 © EPAM Systems

Matching

6

2011 © EPAM Systems

Group Table: “Aspects” of OpenFlow

7

Groups represent sets of actions for flooding, as well as more complex forwarding semantics
(e.g. multipath, fast reroute, and link aggregation). As a general layer of indirection, groups
also enable multiple flows to forward to a single identifier (e.g. IP forwarding to a common
next hop). This abstraction allows common output actions across flows to be changed
efficiently.

Group Identifier Group Type Counters Action bucket

All
Select
Indirect
Fast Failover

2011 © EPAM Systems

OF Config – the new concept of OpenFlow Capable Switch

8

OF Capable Switch

eth0 eth7 tap3lo{ }capable
ports

logical
ports port 0 port 5 port 7{
{

OF
Configuration

Point

2011 © EPAM Systems

NETCONF

9

2011 © EPAM Systems

Example

10

<capable-switch>
<id>CapableSwitch0</id>

<configuration-points>
...
</configuration-points>

<resources>
...
</resources>

<logical-switches>
...
</logical-switches>

</capable-switch>

2011 © EPAM Systems

So what do we really have?

11

 OpenFlow capable switch looks like a container of many
(probably thousands and tens of thousands) processes
which are totally independent.

 Processes can be created/terminated in runtime, always,
always!

 Connections – probably millions of them!
 One process must not crash another – no way!
 What about support new incoming OpenFlow versions? Do we

need stop our switches?
 What about scalability? Who does take care of this?

 Last but not the least: Binary encoding/decoding process
is too boring!

2011 © EPAM Systems

Erlang: Processes

12

 Process creation – spawn(fun task/0).
It takes microseconds and down to hundreds bytes. Tens
of thousands processes can be created per seconds.

 Process isolation.
Every process is isolated inside Erlang VM.
Processes communicate using queues of messages.
You’re able to use global variables, but you won’t!

 Processes as an object.
Local variables as an internal state
Messages as methods

2011 © EPAM Systems

Erlang: Crash handling

13

 The main principle: “Let it fall”

 Don’t use try-catch

 Supervisors – special processes controlling another
processes.

2011 © EPAM Systems

Erlang: Binary Encoding/Decoding

14

decode_match_field(<<Header:4/bytes, Binary/bytes>>) ->

<<ClassInt:16, FieldInt:7, HasMaskInt:1,

Length:8>> = Header,

32 16 15 9 78

class lengthfield M

2011 © EPAM Systems

Erlang: Development and Deployment

15

 OTP – A really reach library. Supervisors, evens
handler, final-state machine – this is OTP.

 Erlang designed considering the fact that
developers put bugs in the code – and try to stop
developers to do it! Did I tell about
immutability?

 Modules can be fixed and replaced in runtime – but
don’t ask me how!

2011 © EPAM Systems

LINC switch

16

OF ControllerOF Configuration
Point

LINCLINCLINC

OF-Config OF Protocol

Userspace implementation API (gen-switch)

HW
Kernel mode

implementation

2011 © EPAM Systems

Is LINC REALLY able?

17

 10,000 connections benchmark – Erlang looks great.
 All OpenFlow 1.3 features are implemented.
 ONF PlugFest – LINC was tested in topologies, together

with enterprise switches and controllers.

 But we relly didn’t test it as a switch, under high load
 But we really out of System Integration Testing for LINC

2011 © EPAM Systems

How you can try it?

18

 Linux box with Erlang, scons and pcap library
 git clone https://github.com/FlowForwarding/LINC-Switch
 cd LINC-Switch
 make rel

 You can refer to README on GitHub. Also, wiki contains
document with simple examples and topologies

https://github.com/FlowForwarding/LINC-Switch

2011 © EPAM Systems

Reference

19

 OpenNetworking Foundation (OpenFlow documents)

https://www.opennetworking.org/about/onf-documents

 FlowForwarding

http://www.flowforwarding.org/

 GitHub repository:

https://github.com/FlowForwarding/LINC-Switch

 Testing framework for OpenFlow:

http://onlab.us/testing.html

 And me, Dmitry Orekhov (Dmitry_Orekhov@epam.com)

https://www.opennetworking.org/about/onf-documents
http://www.flowforwarding.org/
https://github.com/FlowForwarding/LINC-Switch
http://onlab.us/testing.html

