
LINC – Open Source, Enterprise,
Full-Functional OpenFlow Switch,

written on Erlang

Dmitry Orekhov, Epam Systems

2011 © EPAM Systems

OpenFlow switch and Controller

2

OF Switch
OF Switch

OF Controller

OF Switch

Secure
channel

Flow
Table 0

Flow
Table N

OF Protocol

PORTS

OpenFlow
Resource

OpenFlow
Resource

Group
Table

2011 © EPAM Systems

Packet forwarding inside OpenFlow switch

3

OpenFlow Switch

Flow Table 0 Flow Table 1 Flow Table N

Match,
Instruction;
......

Match,
Instruction;
......

Match,
Instruction;
......

In-Packet Out-Packet

• Packet may transferred to other table
• Packet header may be modified
• Packet may be forwarded to given port or just dropped
• Packet may be applied to given QoS

Out-PacketOut-Packet

2011 © EPAM Systems

Flow table entry: key elements

4

Match criteria:
Ingress-port
Ethernet MAC
ARP
IPv4 and IPv6
TCP ports
VLAN, MPLS etc.

Instruction:
Go-To Table
Modify Metadata
Action Set {forward, apply QoS, drop, Apply to
Group}

Match Fields Priority Counters Instruction setTimeout Cookies

2011 © EPAM Systems

OpenFlow examples

5

OpenFlow can be compared to the instruction set of a CPU. It specifies basic primitives
that can be used by an external software application to program the forwarding plane of
network devices, just like the instruction set of a CPU would program a computer system.

2011 © EPAM Systems

Matching

6

2011 © EPAM Systems

Group Table: “Aspects” of OpenFlow

7

Groups represent sets of actions for flooding, as well as more complex forwarding semantics
(e.g. multipath, fast reroute, and link aggregation). As a general layer of indirection, groups
also enable multiple flows to forward to a single identifier (e.g. IP forwarding to a common
next hop). This abstraction allows common output actions across flows to be changed
efficiently.

Group Identifier Group Type Counters Action bucket

All
Select
Indirect
Fast Failover

2011 © EPAM Systems

OF Config – the new concept of OpenFlow Capable Switch

8

OF Capable Switch

eth0 eth7 tap3lo{ }capable
ports

logical
ports port 0 port 5 port 7{
{

OF
Configuration

Point

2011 © EPAM Systems

NETCONF

9

2011 © EPAM Systems

Example

10

<capable-switch>
<id>CapableSwitch0</id>

<configuration-points>
...
</configuration-points>

<resources>
...
</resources>

<logical-switches>
...
</logical-switches>

</capable-switch>

2011 © EPAM Systems

So what do we really have?

11

 OpenFlow capable switch looks like a container of many
(probably thousands and tens of thousands) processes
which are totally independent.

 Processes can be created/terminated in runtime, always,
always!

 Connections – probably millions of them!
 One process must not crash another – no way!
 What about support new incoming OpenFlow versions? Do we

need stop our switches?
 What about scalability? Who does take care of this?

 Last but not the least: Binary encoding/decoding process
is too boring!

2011 © EPAM Systems

Erlang: Processes

12

 Process creation – spawn(fun task/0).
It takes microseconds and down to hundreds bytes. Tens
of thousands processes can be created per seconds.

 Process isolation.
Every process is isolated inside Erlang VM.
Processes communicate using queues of messages.
You’re able to use global variables, but you won’t!

 Processes as an object.
Local variables as an internal state
Messages as methods

2011 © EPAM Systems

Erlang: Crash handling

13

 The main principle: “Let it fall”

 Don’t use try-catch

 Supervisors – special processes controlling another
processes.

2011 © EPAM Systems

Erlang: Binary Encoding/Decoding

14

decode_match_field(<<Header:4/bytes, Binary/bytes>>) ->

<<ClassInt:16, FieldInt:7, HasMaskInt:1,

Length:8>> = Header,

32 16 15 9 78

class lengthfield M

2011 © EPAM Systems

Erlang: Development and Deployment

15

 OTP – A really reach library. Supervisors, evens
handler, final-state machine – this is OTP.

 Erlang designed considering the fact that
developers put bugs in the code – and try to stop
developers to do it! Did I tell about
immutability?

 Modules can be fixed and replaced in runtime – but
don’t ask me how!

2011 © EPAM Systems

LINC switch

16

OF ControllerOF Configuration
Point

LINCLINCLINC

OF-Config OF Protocol

Userspace implementation API (gen-switch)

HW
Kernel mode

implementation

2011 © EPAM Systems

Is LINC REALLY able?

17

 10,000 connections benchmark – Erlang looks great.
 All OpenFlow 1.3 features are implemented.
 ONF PlugFest – LINC was tested in topologies, together

with enterprise switches and controllers.

 But we relly didn’t test it as a switch, under high load
 But we really out of System Integration Testing for LINC

2011 © EPAM Systems

How you can try it?

18

 Linux box with Erlang, scons and pcap library
 git clone https://github.com/FlowForwarding/LINC-Switch
 cd LINC-Switch
 make rel

 You can refer to README on GitHub. Also, wiki contains
document with simple examples and topologies

https://github.com/FlowForwarding/LINC-Switch

2011 © EPAM Systems

Reference

19

 OpenNetworking Foundation (OpenFlow documents)

https://www.opennetworking.org/about/onf-documents

 FlowForwarding

http://www.flowforwarding.org/

 GitHub repository:

https://github.com/FlowForwarding/LINC-Switch

 Testing framework for OpenFlow:

http://onlab.us/testing.html

 And me, Dmitry Orekhov (Dmitry_Orekhov@epam.com)

https://www.opennetworking.org/about/onf-documents
http://www.flowforwarding.org/
https://github.com/FlowForwarding/LINC-Switch
http://onlab.us/testing.html

