LINC — Open Source, Enterprise,
Full-Functional OpenFlow Switch,
written on Erlang

Dmitry Orekhov, Epam Systems

WWW.epam.com <Bﬂ3m>



OpenFlow switch and Controller

OF Controller

A A A

OF Protocol

Secure \ OpenFlow
channel |- =7 | Resource
PORTS
Group *rH- ~s | OpenFlow
Table Resource
Flow | Flow
Table © Table N /

k OF SWit(y/

EPAM Systems
2011 © EPAM Systems 2



Packet forwarding inside OpenFlow switch

OpenFlow Switch

T[ Out-Packet T[ Out-Packet
Flow Table 0 Flow Table 1 Flow Table N
Match, Match, Match,
In-Packet Instruction; Instruction; Instruction; out-Packe
> oooooo s | N e %

« Packet may transferred to other table

« Packet header may be modified

« Packet may be forwarded to given port or just dropped
« Packet may be applied to given QoS

EPAM Systems

2011 © EPAM Systems 3




Flow table entry: key elements

Match Fields Priority Counters Timeout Cookies Instruction set

Match criteria:
Ingress-port
Ethernet MAC

ARP
IPv4 and IPv6
TCP ports

VLAN, MPLS etc.
Instruction:
Go-To Table
Modify Metadata
Action Set {forward, apply QoS, drop, Apply to
Group}

EPAM Systems

2011 © EPAM Systems 4




OpenFlow examples

Switch MAC Eth IP Prot TCP Action
port dst type
Switching * * 00:1f * * * * * * Port6
Flow Port3 00:2 00:1f 0800 Vlanl 1.2.34 56.7.8 4 17264 Port6
switching 0..
Firewall * * * * * * * * 22 Drop
Routing * * * * * * 5678 * * Port6
VLAN * * 00:1f * Vlanl * * * * Port6,
switching port7,
port8

OpenFlow can be compared to the instruction set of a CPU. It specifies basic primitives
that can be used by an external software application to program the forwarding plane of
network devices, just like the instruction set of a CPU would program a computer system.

EPAM Systems

2011 © EPAM Systems

5



Matching

Packet In
Start at table 0

Update counters
Execute instructions:
- update action set
- update packet/match set fields
- update metadata
T —

Match in
table n?

Goto-
Table n?

Execute action
set

Based on fable configuration, do one:
- send to controller
= drop
* continue to next table

T —

EPAM Systems
2011 © EPAM Systems 6



Group Table: “Aspects” of OpenFlow

Group Identifier Group Type

Counters

Action bucket

All

Select
Indirect

Fast Failover

Groups represent sets of actions for flooding, as well as more complex forwarding semantics
(e.g. multipath, fast reroute, and link aggregation). As a general layer of indirection, groups
also enable multiple flows to forward to a single identifier (e.g. IP forwarding to a common
next hop). This abstraction allows common output actions across flows to be changed

efficiently.

EPAM Systems

2011 © EPAM Systems

7



OF Config - the new concept of OpenFlow Capable Switch
OF
Configuration
Point

logical
port © port 5| port 7

T S
reet{ | 10 | [etho] [etn7] | tap3 | |

EPAM Systems

OF Capable Switch

2011 © EPAM Systems 8



NETCONF

Layer Example
Content <capable-switch>...</capable-switch>
Operations <get-config>,<set-config>,<notification>
RPC <rpc>,<rpc-reply>
Transport SSH, TLS, BEEP, SOAP
Protocol

EPAM Systems

2011 © EPAM Systems 9




Example

<capable-switch>
<id>CapableSwitcho</id>

<configuration-points>
;};onfiguration-points>
<resources>
;}éesources>
<logical-switches>

</logical-switches>
</capable-switch>

EPAM Systems

2011 © EPAM Systems 10




So what do we really have?

U OpenFlow capable switch looks like a container of many
(probably thousands and tens of thousands) processes
which are totally independent.

U Processes can be created/terminated in runtime, always,
always!

U Connections - probably millions of them!

 One process must not crash another - no way!

U What about support new incoming OpenFlow versions? Do we
need stop our switches?

U What about scalability? Who does take care of this?

U Last but not the least: Binary encoding/decoding process
is too boring!

EPAM Systems

2011 © EPAM Systems 11




Erlang: Processes

v’ Process creation - spawn(fun task/0).
It takes microseconds and down to hundreds bytes. Tens
of thousands processes can be created per seconds.

v Process isolation.
Every process is isolated inside Erlang VM.
Processes communicate using queues of messages.
You’re able to use global variables, but you won’t!

v Processes as an object.
Local variables as an internal state
Messages as methods

EPAM Systems

2011 © EPAM Systems 12




Erlang: Crash handling

v  The main principle: “Let it fall”
v Don’t use try-catch

v  Supervisors - special processes controlling another
processes.

EPAM Systems

2011 © EPAM Systems 13




Erdang: Binary Encoding/Decoding

32

16 15

9 8 7

class

field

length

v

decode match field(<<Header:4/bytes, Binary/bytes>>) ->
<<ClassInt:16, FieldInt:7, HasMaskInt:1,

Length:8>> =

Header,

2011 © EPAM Systems

EPAM Systems

14




Erlang: Development and Deployment

v' OTP - A really reach library. Supervisors, evens
handler, final-state machine - this is OTP.

v' Erlang designed considering the fact that
developers put bugs in the code - and try to stop
developers to do it! Did I tell about
immutability?

v’ Modules can be fixed and replaced in runtime - but
don’t ask me how!

EPAM Systems

2011 © EPAM Systems 15



LINC switch

OF Configuration OF Controller

Point

OF-Config OF Protocol
; |
LINC .JJ
Userspace implementation API (gen-switch)
Kernel mode
HIW implementation

EPAM Systems

2011 © EPAM Systems 16




Is LINC REALLY able?

10,000 connections benchmark - Erlang looks great.

L All OpenFlow 1.3 features are implemented.

L ONF PlugFest - LINC was tested in topologies, together
with enterprise switches and controllers.

0 But we relly didn’t test it as a switch, under high load
0 But we really out of System Integration Testing for LINC

EPAM Systems

2011 © EPAM Systems 17




How you can try it?

v’ Linux box with Erlang, scons and pcap library

v git clone https://github.com/FlowForwarding/LINC-Switch
v’ cd LINC-Switch

v’ make rel

v" You can refer to README on GitHub. Also, wiki contains
document with simple examples and topologies

EPAM Systems

2011 © EPAM Systems 18



https://github.com/FlowForwarding/LINC-Switch

Reference

O OpenNetworking Foundation (OpenFlow documents)

https://www.opennetworking.org/about/onf-documents

O FlowForwarding

http://www.flowforwarding.org/

O GitHub repository:
https://github.com/FlowForwarding/LINC-Switch

U Testing framework for OpenFlow:

http://onlab.us/testing.html

O And me, Dmitry Orekhov (Dmitry Orekhov@epam.com)

EPAM Systems

2011 © EPAM Systems 19



https://www.opennetworking.org/about/onf-documents
http://www.flowforwarding.org/
https://github.com/FlowForwarding/LINC-Switch
http://onlab.us/testing.html

