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OpenFlow switch and Controller
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Packet forwarding inside OpenFlow switch
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OpenFlow Switch
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• Packet may transferred to other table
• Packet header may be modified
• Packet may be forwarded to given port or just dropped
• Packet may be applied to given QoS

Out-PacketOut-Packet
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Flow table entry: key elements
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Match criteria: 
Ingress-port
Ethernet MAC
ARP
IPv4 and IPv6
TCP ports
VLAN, MPLS etc.

Instruction: 
Go-To Table
Modify Metadata
Action Set {forward, apply QoS, drop, Apply to 
Group}

Match Fields Priority Counters Instruction setTimeout Cookies
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OpenFlow examples
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OpenFlow can be compared to the instruction set of a CPU. It specifies basic primitives 
that can be used by an external software application to program the forwarding plane of 
network devices, just like the instruction set of a CPU would program a computer system. 
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Matching
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Group Table: “Aspects” of OpenFlow
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Groups represent sets of actions for flooding, as well as more complex forwarding  semantics 
(e.g. multipath, fast reroute, and link aggregation). As a general layer of indirection, groups 
also enable multiple flows to forward to a single identifier (e.g. IP forwarding to a common 
next hop). This abstraction allows common output actions across flows to be changed 
efficiently. 

Group Identifier Group Type Counters Action bucket

All
Select
Indirect
Fast Failover
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OF Config – the new concept of OpenFlow Capable Switch
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NETCONF
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Example
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<capable-switch>
<id>CapableSwitch0</id>

<configuration-points>
...
</configuration-points>

<resources>
...
</resources>

<logical-switches>
...
</logical-switches>

</capable-switch>
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So what do we really have?
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 OpenFlow capable switch looks like a container of many 
(probably thousands and tens of thousands) processes 
which are totally independent.

 Processes can be created/terminated in runtime, always, 
always!

 Connections – probably millions of them!
 One process must not crash another – no way!
 What about support new incoming OpenFlow versions? Do we 

need stop our switches?
 What about scalability? Who does take care of this?

 Last but not the least: Binary encoding/decoding process 
is too boring!
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Erlang: Processes
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 Process creation – spawn(fun task/0).
It takes microseconds and down to hundreds bytes. Tens 
of thousands processes can be created per seconds.

 Process isolation. 
Every process is isolated inside Erlang VM. 
Processes communicate using queues of messages. 
You’re able to use global variables, but you won’t!

 Processes as an object.
Local variables as an internal state
Messages as methods



2011 © EPAM Systems

Erlang: Crash handling
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 The main principle: “Let it fall”

 Don’t use try-catch

 Supervisors – special processes controlling another 
processes.
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Erlang: Binary Encoding/Decoding
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decode_match_field(<<Header:4/bytes, Binary/bytes>>) ->

<<ClassInt:16, FieldInt:7, HasMaskInt:1,

Length:8>> = Header,

32 16 15 9 78

class lengthfield M
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Erlang: Development and Deployment
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 OTP – A really reach library. Supervisors, evens 
handler, final-state machine – this is OTP.

 Erlang designed considering the fact that 
developers put bugs in the code – and try to stop 
developers to do it! Did I tell about 
immutability?

 Modules can be fixed and replaced in runtime – but 
don’t ask me how!
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LINC switch

16

OF ControllerOF Configuration 
Point

LINCLINCLINC

OF-Config OF Protocol

Userspace implementation API (gen-switch)

HW
Kernel mode 

implementation



2011 © EPAM Systems

Is LINC REALLY able?
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 10,000 connections benchmark – Erlang looks great.
 All OpenFlow 1.3 features are implemented.
 ONF PlugFest – LINC was tested in topologies, together 

with enterprise switches and controllers.

 But we relly didn’t test it as a switch, under high load
 But we really out of System Integration Testing for LINC
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How you can try it?

18

 Linux box with Erlang, scons and pcap library
 git clone https://github.com/FlowForwarding/LINC-Switch
 cd LINC-Switch
 make rel

 You can refer to README on GitHub. Also, wiki contains 
document with simple examples and topologies

https://github.com/FlowForwarding/LINC-Switch
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Reference
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 OpenNetworking Foundation (OpenFlow documents)

https://www.opennetworking.org/about/onf-documents

 FlowForwarding

http://www.flowforwarding.org/

 GitHub repository:

https://github.com/FlowForwarding/LINC-Switch

 Testing framework for OpenFlow:

http://onlab.us/testing.html

 And me, Dmitry Orekhov (Dmitry_Orekhov@epam.com)

https://www.opennetworking.org/about/onf-documents
http://www.flowforwarding.org/
https://github.com/FlowForwarding/LINC-Switch
http://onlab.us/testing.html

