
Modernize your 10-
15 years old PHP
applications

Legacy PHP applications are
everywhere.

History of PHP applications:

● 79% websites writen in PHP among the top
1 million, according to W3Techs.com

● 1994: PHP was created. Start of the
Spaghetti age

● 2004: PHP5 was released
● 2007: ZF 1.0.0 and SF 1.0 were released.

Spaghetti Code

Business rely on features.

● Maintaining two versions of applications
need two developers teams.

● New developments don't makes money
until the new version is released.

● Releasing everything new at once is very
dangerous and can cost you big amount
of clients - money.

Business must react really fast
on market changes

Before the big used to eat
the small,
nowadays it is the fast
who eat the slow

Progressive rewrite

Only 1 app to maintain!

● Release rewritten features one by one.

● Don't forget about existing features in
rewrite process

● You can always stop that process and
moves resources to implementations.

Testing!

● Create functionally tests for that what
could harm your business (registrations,
payments etc.)

● Spaghetti code is deeply coupled -
touching one part breaks something
other.

Create functional test on the most critical
scenarios - use Mink + ZombieJs (https:
//github.com/Behat/Mink).

Migrate to modern solutions like
Symfony2

Use Symfony Components:

● HttpFoundation - Defines an object-oriented layer for
the HTTP specification.

● Routing - Maps an HTTP request to a set of
configuration variables.

● Console - Eases the creation of beautiful and testable
command line interfaces.

● DependencyInjection - Allows you to standardize and
centralize the way objects are constructed in your
application.

● EventDispatcher - Implements a lightweight version of
the Observer design pattern.

Legacy handling
$kernel = new AppKernel('dev', true);
$request = Request::createFromGlobals();
$kernel->boot();
try {
 // TRY SYMFONY
 $response = $kernel->handle(

$request,
HttpKernelInterface::MASTER_REQUEST,
false

);
 $response->send();
 $kernel->terminate($request, $response);
} catch (NotFoundHttpException $e) {
 // TRY LEGACY APP
 require_once __DIR__ . '/../application.php';
 $application->bootstrap();
 $application->run();
}

Other useful things

● Try to share dependency container
between legacy and modern apps.

● Try to merge applications directories
● Make legacy code compatible with PHP

5.3 and 5.4 (use Phpcs CodeSniffs)
● Run tests often!
● Release new rewritten features often -

one after one.

Thank You!

Paweł Mikołajczuk
Newscoop Developer

pawel.mikolajczuk@sourcefabric.org
Github & Twitter: ahilles107
www.sourcefabric.org

