
The Word-based Regular Expressions

Aleksey Cheusov
<vle@gmx.net>

<Aleksey.Cheusov@IHS.com>

Ex. <cheusov@invention-machine.com>

Ex. <cheusov@scnsoft.com>

Minsk LUG meeting, 29 Dec. 2012
LVEE 2013 Winter, 16 Feb. 2013

Belarus

Plan for presentation

Mathematics: RL definition and theorem

Real World: applications of RL and some notes

Linguistics: POS tagset, Semantic tagset, Text tagging,
Tagged text corpus

Wanted: Tasks

Mathematics: ExpRL definition, WRL definition

Linguistics + Real World: WRE syntax and examples

Бурные и продолжительные аплодисменты
(вы же знаете ,)

Regular language

Definition: given a finite non-empty set of elements Σ (alphabet):

∅ is a regular language.

For any element v ∈ Σ, {v} is a regular language.

If A and B are regular languages, so is A ∪ B .

If A and B are regular languages, so is {ab|a ∈ A, b ∈ B},
where ab means string concatenation.

If A is a regular language, so is A∗ where
A∗ = {a1a2. . .an|ai ∈ A, n >= 0}.

No other languages over Σ are regular.

Example:

Let Σ = {a, b, c}. Then since aab and cc are members of Σ∗,
{aab} and {cc} are regular languages. So is the union of these
two sets {aab, cc}, and so is the concatenation of the two
{aabcc}. Likewise, {aab}∗, {cc}∗ and {aab, cc , aabcc}∗ are
regular languages.

Regular language (interesting fact)

Provable fact:

Regular languages are closed under intersection and negation
operations.

Finite state automaton

Definition: 5-tuple (Σ,S ,S0,F , δ) is a finite state automaton

Σ is a finite non-empty set of elements (alphabet).

S is a finite non-empty set of states.

S0 ⊆ S is a set of start states.

F ⊆ S is a set of finite states.

δ : S × Σ → 2S is a state transition function.

Theorem: ∀ regular language R , ∃ FSA f , such that L(f) = R ; ∀
FSA f , L(f) is a regular language (L — language of FSA, that is a
set of accepted inputs).
Consequence: FSA are widely used in practice for pattern
matching with a help of regular languages (and finite state
machines AKA FSM too, including Mealy machines, Moore
machines, and finite state transducers AKA FST)

Real world. Regular expressions (hello UNIX and FOSS!).

Regular language is a foundation for so called regular expressions,
alphabet Σ is mainly a set of characters (e.g. ASCII, Unicode):

POSIX BRE: grep (except back references), sed, vi
and a lot of other traditional UNIX tools

POSIX ERE: grep -E, sed -E (BSD), sed -r (GNU), awk,
lex
and a lot of other traditional UNIX tools

Perl, pcre, Ruby, Python (superset of regular language, and
therefore extremely inefficient /)

Google re2, Yandex PIRE

...

Some extensions in regular expressions over regular languages:

submatch operation (depending on implementation
may still be FSM but not FSA)

backreference (incompatible with
regular languages and FSMs at all)

Tagsets

Penn part-of-speech tag set:

NN noun, singular or mass (apple, computer, fruit etc.)

NNS noun plural (apples, computers, fruits etc.)

CC coordinating conjunction (and, or)

VB verb, base form (give, book, destroy etc.)

VBD verb, past tense form (gave, booked, destroyed etc.)

VBN verb, past participle form (given, booked, destroyed etc.)

VBG verb, gerund/present participle (giving, booking,

destroying etc.)

etc.

Semantic tag set:

LinkVerb a verb that connects the subject to the
complement(seem, feel, look etc.)

AnimateNoun (brother, son etc.)

etc.

Tagged sentence, POS tagging, semantic tagging

Examples:

The book is red →
The_DT book_NN is_VBZ red_JJ →
The_DT book_NN/Object is_VBZ red_JJ/Color

Note: Words book and red are ambiguous.

My son goes to school →
My_PRP$ son_NN goes_VBZ to_IN school_NN →
My_PRP$ son_NN/Person goes_VBZ to_TO
school_NN/Establishment

Task

Q: Suppose we have a text tagged by part-of-speech and semantic
tags. What’s then? Can we use traditional regular expressions for
pattern matching (including submatch)? How easily and efficiently?
A: In my opinion “NO”. I believe we need more powerful domain
specific language for this task (widely used in NLP) .

Мой любимый велосипед. Expanded regular language

Definition: given a non-empty set of elements Σ (alphabet) and a
set of one-place predicates P = {P1,P2, . . .Pk},
Pi : Σ → {true, false}:

∅ is an expanded regular language.

For any element v ∈ Σ, {v} is an expanded regular language.

For any i {v |Pi (v) = true} is an expanded regular language.

Σ is an expanded regular language.

If A and B are expanded regular languages, so is A ∪ B .

If A and B are expanded regular languages, so is A \ B .

If A and B are expanded regular languages, so is
{ab|a ∈ A, b ∈ B}, where ab means string concatenation.

If A is a regular language, so is A∗ where
A∗ = ∅ ∪ {a1a2. . .an|ai ∈ A, n > 0}.

No other languages over Σ are expanded regular.

Expanded regular language (interesting facts)

Provable fact:

∀ expanded regular language R we can build a regular
language R∗ over alphabet Σ∗, such that ∃f : Σ∗ → 2Σ and
L(R) = L(R∗) (expanding all elements in L(R∗) with a help of
f).

Consequences:

Expanded regular languages are closed under intersection and
negation operations.

We can build expanded regular expression engine based on
well-known FSM-based algorithms!!!

The Word-based regular language

Definition: given

W — set of words (character sequences), e.g.
”the”, ”apple””123”, ”; ”, ”C2H5OH”, . . .

TPOS — finite non-empty set of part-of-speech tag set, e.g..
{DT ,NN,NNS ,VBP ,VBZ , . . . }

Tsem — finite non-empty set of semantic tag set, e.g.
{LinkVerb,Person,Object,TransitiveVerb, . . . }

DPOS : W → 2TPOS — POS dictionary, e.g.
DPOS (”the”) = {DT}, DPOS(”book”) = {NN,VB ,VBP},
DPOS (”and”) = {CC}

Dsem : W → 2Tsem — semantic dictionary, e.g.
Dsem(”son”) = {Person},
Dsem(”mouse”) = {Animal ,ComputerDevice}

EREs — finite set of POSIX extended regular expressions, e.g.
{”. ∗ ing”, ”.multi . ∗ al”, ”[A−Z][a − z]”, ”[0− 9] + ” . . . } etc.

(to be continued)

The Word-based regular language

(continuation) the word-based regular language
(W ,TPOS ,Tsem,DPOS ,Dsem,EREs) is an expanded regular
language over alphabet W × TPOS × 2Tsem and one-place
predicates P = {Pcheck

tPOS
,Pcheck

tsem
,P

tagging
tPOS

,P
tagging
tsem ,Pword

re }, where

Pcheck
tPOS

(w , ·, ·) = true if tPOS ∈ DPOS(w), and false otherwise

Pcheck
tsem (w , ·, ·) = true if tsem ∈ Dsem(w), and false otherwise

P
tagging
tPOS

(·, tagPOS , ·) = true if tPOS = tagPOS , and false

otherwise

P
tagging
tsem (·, ·, tagssem) = true if tsem ∈ tagssem, and false

otherwise

Pword
re (w , ·, ·) = true if POSIX ERE re ∈ EREs matches w ,

and false otherwise

The Word-based regular expressions (Finally!).

Syntax:

"word" — word itself (Pword
re), e.g. "the", "2012-12-29" etc.

’regexp’ — words matched by specified regexp (Pword
re)

Tag — words tagged as tagPOS (P tagging
tPOS

), e.g. NN, DT, VB
etc.

%Tag — words tagged as tagsem (P tagging
tsem), e.g. %Person,

%Object, %LinkLerb etc.

_Tag — words having as tagPOS in POS dictionary (Pcheck
tPOS

),
e.g. _NN, _DT, _VB etc.

@Tag — words having as tagsem in semantic dictionary
(Pcheck

tsem), e.g. @LinkVerb, @Object etc.

. (dot) — any word with any POS and semantic tags

ˆ — beginning of the sentence

$ — end of the sentence

(to be continued)

The Word-based regular expressions (Finally!).

Syntax (continuation):

(R) — grouping like in mathematical expressions

<num R > — submatch and extraction

R ? and [R] — optional WRE

R * and R + — possibly empty and non-empty repetitions

R {n,m}, R {n,} and R {,m} — repetitions

R – S — subtraction

R & S and R / S — intersection, / is for single word WREs,
& is for complex WREs

R | S — union

R S — concatenation

!R — negation (L(!R) is equal to either Σ \ L(R) or Σ ∗ \L(R)
depending on a context of use)

(to be continued)

The Word-based regular expressions (Finally!).

Syntax (priorities from highest to lowest, continuation):

, / and | in single word non-spaced WREs

Prepositional unary operation !

Postpositional unary operations {n,m}, ’?’, ’+’ and ’*’

(R) and <num R >

R & S

R – S

R S

R | S

(to be continued)

WRE examples

How to select noun phrases
(leftmost-longest match, only POS tags)
(DT | CD+)? RB * CC|JJ|JJR|JJS * (NN|NNS + | NP +)
Ex.: This absolutely stupid decision
Ex.: The best fuel cell
Ex.: Black and white colors
Ex.: Vasiliy Pupkin

NER (Named Entity Recognition) for person names
Dsem("MrDr") = {"Mrs.", "Mr.", "Dr.", "Doctor",
"President", "Dear", . . . }
@MrDr <1 ’[A-Z][a-z]+’/!@MrDr␣+>
Ex.: Doctor <1 Zhivago>
Ex.: Dr. <1 Vasiliy Pupkin>
Ex.: Mrs. <1 Kate>
but not
Ex.: Mr. <1 President>

WRE examples

Question focus (object attributes)
ˆ "What" "is" "the" <1 @Attribute > "of" <2 .* > "?"
Ex.: What is the <1 color > of <2 your book> ?

Tiny definitions (for example from Wikipedia)
m4_define(NounPhrase, “(see previous slide)”) ˆ (NounPhrase
& (.)) "is" (NounPhrase & (.))
Ex.: What is the <1 color > of <2 your book> ?

Sentiment analysis
Dsem("BadCharact") = {"sucks", "stupid", "crappy",
"shitty", . . . }
Dsem("GoodCharact") = {"rocks", "awesome", "excellent",
"best", . . . }
Dsem("OurProduct") = {"Linux", "NetBSD", "Ubuntu",
"AltLinux", "iPad", "Android", . . . }
<1 @BadCharact|@GoodCharact> <2 @OurProduct> |
<2 @OurProduct> ["is" DT?] <1
@BadCharact|@GoodCharact>

WRE examples

Context-free or Context-sensitive parsing

"Features" assignment in machine learning techniques

Prototyping. Imagine a grep/awk/ruby with builtin WRE!
(POSIX regexec(3)/regcomp(3) API is good enough)

The Word-based Regular Expressions

is really cool DSL for

Natural Language Processing!

Objections? Comments? Questions?

